广告
返回顶部
首页 > 资讯 > 后端开发 > Python >pandas如何统计某一列或某一行的缺失值数目
  • 500
分享到

pandas如何统计某一列或某一行的缺失值数目

2024-04-02 19:04:59 500人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录统计某一列或某一行的缺失值数目1.使用isnull()2.使用count利用pandas处理缺失值处理缺失值统计某一列或某一行的缺失值数目 1.使用isnull() import

统计某一列或某一行的缺失值数目

1.使用isnull()

import pandas as pd

# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')

# 计算data每一行有多少个缺失值的值,即按行统计缺失值
rows_null = df.isnull().sum(axis=1) 

# 下面则是按列统计缺失值
col_null = df.isnull().sum(axis=0)

#统计整个df的缺失值
all_null = df.isnull().sum().sum()

# 统计某一列的缺失值
idx_null = df['列名'].isnull().sum(axis=0)

2.使用count

import pandas as pd

# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')

# 计算data每一行有多少个非空的值,即按行统计非空值
rows_not_null = df.count(axis=1) 

# 下面则是按列统计非空值
cols_not_null = df.count(axis=0)
cols_null = df.shape[1] - cols_not_null

# 统计某一列的非空值
col_not_null = df['列名'].count(axis=0)

利用pandas处理缺失值

处理缺失值

def missing_values(dataframe):
    missing_ratio = (dataframe.isnull().sum() / len(dataframe))*100
    missing_ratio = missing_ratio.drop(missing_ratio[missing_ratio == 0].index).sort_values(ascending=False)
    missing_count = dataframe.isnull().sum()
    missing_count = missing_count.drop(missing_count[missing_count == 0].index).sort_values(ascending=False)
    info = pd.DataFrame({'Missing Ratio': missing_ratio, 'Missing Count': missing_count})
    return info

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

--结束END--

本文标题: pandas如何统计某一列或某一行的缺失值数目

本文链接: https://www.lsjlt.com/news/117943.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作