广告
返回顶部
首页 > 资讯 > 后端开发 > Python >AI与Python人工智能遗传算法
  • 777
分享到

AI与Python人工智能遗传算法

AI Python遗传算法Python AI 2022-11-11 00:11:27 777人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录什么是遗传算法?如何使用GA进行优化问题?GA机制优化过程的阶段安装必要的软件包使用遗传算法实现解决方案生成位模式符号回归问题本章详细讨论了人工智能的遗传算法。 什么是遗传算法?

本章详细讨论了人工智能的遗传算法。

什么是遗传算法?

遗传算法(GA)是基于自然选择和遗传概念的基于搜索的算法。GA是更大的计算分支的子集,称为进化计算。

GA由John Holland及其密歇根大学的学生和同事开发,最着名的是David E. Goldberg。从那以后,已经尝试了各种优化问题并取得了很大的成功。

在GA中,我们有一组可能的解决方案来解决给定的问题。然后这些溶液经历重组和突变(如在天然遗传学中),产生新的儿童,并且该过程重复多代。为每个个体(或候选解决方案)分配适合度值(基于其目标函数值),并且使得更健康的个体具有更高的交配和产生更健康的个体的机会。这符合达尔文适者生存理论。

因此,它不断发展更好的个人或解决方案,直到它达到停止标准。

遗传算法在本质上具有足够的随机性,但它们比随机局部搜索(我们只是尝试随机解决方案,跟踪迄今为止的最佳解决方案)表现得更好,因为它们也利用了历史信息。

如何使用GA进行优化问题?

优化是使设计,情境,资源和系统尽可能有效的行动。以下框图显示了优化过程 -

GA机制优化过程的阶段

以下是用于优化问题的GA机制的一系列步骤。

  • 第1步 - 随机生成初始种群。
  • 第2步 - 选择具有最佳适合度值的初始解决方案。
  • 步骤3 - 使用突变和交叉算子重新组合所选解决方案。
  • 第4步 - 将后代插入人口。
  • 步骤5 - 现在,如果满足停止条件,则返回具有最佳适合度值的解决方案。否则转到第2步。

安装必要的软件包

为了通过python中的遗传算法解决问题,我们将使用一个名为DEAP的功能强大的GA包。它是一个新的进化计算框架库,用于快速原型设计和思想测试。我们可以在命令提示符下使用以下命令安装此软件包 -

pip install deap

如果您使用的是anaconda环境,则可以使用以下命令安装deap -

conda install -c conda-forge deap

使用遗传算法实现解决方案

本节将介绍使用遗传算法实现解决方案的过程。

生成位模式

以下示例显示如何根据One Max问题生成包含15个字符串的位字符串。

如图所示导入必要的包 -

import random
from deap import base, creator, tools

定义评估功能。这是创建遗传算法的第一步。

def eval_func(individual):
   target_sum = 15
   return len(individual) - abs(sum(individual) - target_sum),

现在,使用正确的参数创建工具箱 -

def create_toolbox(num_bits):
   creator.create("FitneSSMax", base.Fitness, weights=(1.0,))
   creator.create("Individual", list, fitness=creator.FitnessMax)

初始化工具箱

toolbox = base.Toolbox()
toolbox.reGISter("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual,
   toolbox.attr_bool, num_bits)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

注册评估运营商 -

toolbox.register("evaluate", eval_func)

现在,注册交叉运算符 -

toolbox.register("mate", tools.cxTwoPoint)

注册变异算子 -

toolbox.register("mutate", tools.mutFlipBit, indpb = 0.05)

定义繁殖的运营商 -

toolbox.register("select", tools.selTournament, tournsize = 3)
return toolbox
if __name__ == "__main__":
   num_bits = 45
   toolbox = create_toolbox(num_bits)
   random.seed(7)
   population = toolbox.population(n = 500)
   probab_crossing, probab_mutating = 0.5, 0.2
   num_generations = 10
   print('\nEvolution process starts')

评估整个人口 -

fitnesses = list(map(toolbox.evaluate, population))
for ind, fit in zip(population, fitnesses):
   ind.fitness.values = fit
print('\nEvaluated', len(population), 'individuals')

创造和迭代几代人 -

for g in range(num_generations):
   print("\n- Generation", g)

选择下一代个人 -

offspring = toolbox.select(population, len(population))

现在,克隆选定的个人 -

offspring = list(map(toolbox.clone, offspring))

在后代上应用交叉和变异 -

for child1, child2 in zip(offspring[::2], offspring[1::2]):
   if random.random() < probab_crossing:
   toolbox.mate(child1, child2)

删除孩子的健身价值

del child1.fitness.values
del child2.fitness.values

现在,应用变异 -

for mutant in offspring:
   if random.random() < probab_mutating:
   toolbox.mutate(mutant)
   del mutant.fitness.values

评估健康状况不佳的人 -

invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
   ind.fitness.values = fit
print('Evaluated', len(invalid_ind), 'individuals')

现在,用下一代个人取代人口 -

population[:] = offspring

打印当前世代的统计数据 -

fits = [ind.fitness.values[0] for ind in population]
length = len(population)
mean = sum(fits) / length
sum2 = sum(x*x for x in fits)
std = abs(sum2 / length - mean**2)**0.5
print('Min =', min(fits), ', Max =', max(fits))
print('Average =', round(mean, 2), ', Standard deviation =',
round(std, 2))
print("\n- Evolution ends")

打印最终输出 -

 best_ind = tools.selBest(population, 1)[0]
   print('\nBest individual:\n', best_ind)
   print('\nNumber of ones:', sum(best_ind))
Following would be the output:
Evolution process starts
Evaluated 500 individuals
- Generation 0
Evaluated 295 individuals
Min = 32.0 , Max = 45.0
Average = 40.29 , Standard deviation = 2.61
- Generation 1
Evaluated 292 individuals
Min = 34.0 , Max = 45.0
Average = 42.35 , Standard deviation = 1.91
- Generation 2
Evaluated 277 individuals
Min = 37.0 , Max = 45.0
Average = 43.39 , Standard deviation = 1.46
… … … …
- Generation 9
Evaluated 299 individuals
Min = 40.0 , Max = 45.0
Average = 44.12 , Standard deviation = 1.11
- Evolution ends
Best individual:
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 
 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1]
Number of ones: 15

符号回归问题

这是遗传编程中最着名的问题之一。所有符号回归问题都使用任意数据分布,并尝试使用符号公式拟合最准确的数据。通常,像RMSE(均方根误差)这样的度量用于衡量个体的适应度。这是一个经典的回归问题,在这里我们使用等式5x 3 -6x 2 + 8x = 1。我们需要遵循上面示例中的所有步骤,但主要部分是创建原始集,因为它们是个人的构建块,因此评估可以开始。在这里,我们将使用经典的基元集。

以下Python代码详细解释了这一点 -

import operator
import math
import random
import numpy as np
from deap import algorithms, base, creator, tools, gp
def division_operator(numerator, denominator):
   if denominator == 0:
      return 1
   return numerator / denominator
def eval_func(individual, points):
   func = toolbox.compile(expr=individual)
   return math.fsum(mse) / len(points),
def create_toolbox():
   pset = gp.PrimitiveSet("MAIN", 1)
   pset.addPrimitive(operator.add, 2)
   pset.addPrimitive(operator.sub, 2)
   pset.addPrimitive(operator.mul, 2)
   pset.addPrimitive(division_operator, 2)
   pset.addPrimitive(operator.neg, 1)
   pset.addPrimitive(math.cos, 1)
   pset.addPrimitive(math.sin, 1)
   pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))
   pset.renameArguments(ARG0 = 'x')
   creator.create("FitnessMin", base.Fitness, weights = (-1.0,))
   creator.create("Individual",gp.PrimitiveTree,fitness=creator.FitnessMin)
   toolbox = base.Toolbox()
   toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
   toolbox.expr)
   toolbox.register("population",tools.initRepeat,list, toolbox.individual)
   toolbox.register("compile", gp.compile, pset = pset)
   toolbox.register("evaluate", eval_func, points = [x/10. for x in range(-10,10)])
   toolbox.register("select", tools.selTournament, tournsize = 3)
   toolbox.register("mate", gp.cxOnePoint)
   toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
   toolbox.register("mutate", gp.mutUnifORM, expr = toolbox.expr_mut, pset = pset)
   toolbox.decorate("mate", gp.staticLimit(key = operator.attrgetter("height"), max_value = 17))
   toolbox.decorate("mutate", gp.staticLimit(key = operator.attrgetter("height"), max_value = 17))
   return toolbox
if __name__ == "__main__":
   random.seed(7)
   toolbox = create_toolbox()
   population = toolbox.population(n = 450)
   hall_of_fame = tools.HallOfFame(1)
   stats_fit = tools.Statistics(lambda x: x.fitness.values)
   stats_size = tools.Statistics(len)
   mstats = tools.MultiStatistics(fitness=stats_fit, size = stats_size)
   mstats.register("avg", np.mean)
   mstats.register("std", np.std)
   mstats.register("min", np.min)
   mstats.register("max", np.max)
   probab_crossover = 0.4
   probab_mutate = 0.2
   number_gen = 10
   population, log = algorithms.eaSimple(population, toolbox,
      probab_crossover, probab_mutate, number_gen,
      stats = mstats, halloffame = hall_of_fame, verbose = True)

请注意,所有基本步骤与生成位模式时使用的步骤相同。该程序将在10代之后给出输出为min,max,std(标准偏差)。

以上就是AI与Python人工智能遗传算法的详细内容,更多关于AI Python遗传算法的资料请关注编程网其它相关文章!

--结束END--

本文标题: AI与Python人工智能遗传算法

本文链接: https://www.lsjlt.com/news/118285.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作