iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >Python 自动控制原理 control的详细解说
  • 915
分享到

Python 自动控制原理 control的详细解说

2024-04-02 19:04:59 915人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录传递函数输入响应系统绘图Laplace 逆变换传递函数 创建传递函数有两种方式: import control as ctrl # 方式 1 s = ctrl.tf('s')

传递函数

创建传递函数有两种方式:

import control as ctrl
 
# 方式 1
s = ctrl.tf('s')
sys = 100 / (s ** 2 + 10 * s + 100)
 
# 方式 2
sys = ctrl.tf([100], [1, 10, 100])

对 tf 这个类,它内置的方法可求解 零点、极点、特征参数、特征根

# 求零点
sys.zero()
 
# 求极点
sys.pole()
 
# 特征参数、特征根
sys.damp()

输入响应

# 阶跃动态指标
step_info(sys)
# 阶跃响应
t, response = step_response(sys, T)
 
# 脉冲响应
t, response = impulse_response(sys, T)
 
t, response = initial_response(sys, T)
t, response = forced_response(sys, T)

T 是响应的时间,可以是 float (即时间上限),也可以是数组

阶跃动态指标是 dict 类型,包括:'RiseTime', 'SettlingTime', 'SettlingMin', 'SettlingMax', 'Overshoot', 'Undershoot', 'Peak', 'PeakTime', 'SteadyStateValue'

系统绘图

# Nyquist图, 可传入列表
nyquist_plot(sys)
 
# Bode图, 可传入列表
bode_plot(sys)
 
# 根轨迹图
root_locus(sys)

绘图使用的是 matplotlib.pyplot,所以执行完函数后,要加上 plt.show() 才会显示图像

Laplace 逆变换

可能是我太弱找不到这个包的 Laplace 逆变换函数,也可能是这个包真的没有这个函数

于是我利用 sympy 这个包求解:定义时域响应这个类,__call__ 使其可以计算时间数组 (np.array) 的响应

import sympy
class Time_Response:
    ''' 时域响应'''
    s, t = sympy.symbols('s, t')
 
    def __init__(self, fun, doprint=False):
        ''' fun: 返回关于s的传递函数的 function
            doprint: 输出公式'''
        sys = fun(self.s)
        self.f_t = sympy.integrals.inverse_laplace_transfORM(sys, s=self.s, t=self.t)
        if doprint:
            sympy.pprint(self.f_t)
 
    def __call__(self, time):
        ''' 使自身可作为函数被调用'''
        response = list(map(lambda i: float(self.f_t.subs({self.t: i})), time))
        return np.array(response)

设置 doprint 为 True,则可以输出时域响应的方程 —— 但是问题在于,自动控制原理里面的 Laplace 变换是默认 F(s) 各阶导数的初始值均为 0 的,这个条件我没有办法加入到 sympy 的求解过程里,所以结果看起来就有些奇怪

import control as ctrl
import matplotlib.pyplot as plt
import numpy as np
 
# 自定义类所在的模块
from mod.math_model import Time_Response
orange = 'orange'
blue = 'deepskyblue'
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
f_t = Time_Response(lambda s: 100 / (s ** 2 + 10 * s + 100) / s, doprint=True)
t = np.linspace(0, 1, 100)
plt.subplot(1, 2, 1)
plt.title('sympy 计算')
plt.plot(t, f_t(t), c=orange)
s = ctrl.tf('s')
sys = 100 / (s ** 2 + 10 * s + 100)
t, response = ctrl.step_response(sys, T=1)
plt.subplot(1, 2, 2)
plt.title('control 计算')
plt.plot(t, response, c=blue)
plt.show()

对比 sympy 和 control 求解的响应曲线:一毛一样

到此这篇关于python 自动控制原理 control的详细解说的文章就介绍到这了,更多相关Python control内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python 自动控制原理 control的详细解说

本文链接: https://www.lsjlt.com/news/119592.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作