广告
返回顶部
首页 > 资讯 > 后端开发 > Python >java二叉树面试题详解
  • 934
分享到

java二叉树面试题详解

2024-04-02 19:04:59 934人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录二叉树的深度二叉搜索树的第k大节点从上到下打印二叉树二叉树的镜像对称的二叉树树的子结构重建二叉树二叉树的下一个节点二叉搜索树的后序遍历路径二叉树中和为某一值的路径二叉搜索树与双向

二叉树的深度

题目:输入一颗二叉树的根节点,求该树的的深度。输入一颗二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成的一条路径,最长路径的长度为树的深度。

如果一棵树只有一个节点,那么它的深度是1.如果根节点只有左子树,那深度是其左子树的深度+1,同样的只有右子树的话,深度是其右子树深度+1,如果既有左子树又有右子树,取两个子树的深度最大值+1即可。用递归很容易实现。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
int getDepth(node* root) {//获取树深度
	if (root == nullptr)
		return 0; //为空返回0
	int l = getDepth(root->left);//左子树深度
	int r = getDepth(root->right);//右子树深度
	return max(l, r) + 1;//取最大的+1
}
int main() {
	node* root = new node(1);//构建一颗二叉树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(3);
	l1->left = new node(4);
	l1->right = new node(5);
	r1->left = new node(6);
	r1->right = new node(7);
	printf("%d", getDepth(root));
	return 0;
}
//运行结果:3

运行结果:

3

二叉搜索树的第k大节点

题目:给定一颗二叉搜索树,找出其中第k大节点。注意二叉搜索树中,左节点比根节点小,右节点比根节点大。

对于二叉搜索树来说,它的中序遍历就是从小到大递增的序列,因此只需要对二叉搜索树中序遍历,就能很容易找到它的第k大节点。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
node* Kth(node* root, int &k) {
	node* ans = nullptr;
	if (root->left != nullptr)
		ans = Kth(root->left, k);
	if (ans == nullptr) {
		if (k == 1)
			ans = root;
		k--;
	}
	if (root->right != nullptr && ans == nullptr)
		ans = Kth(root->right, k);
	return ans;
}
node* check(node* root, int k) {//递归前先判断极端条件
	if (k <= 0 || root == nullptr)
		return nullptr;
	return Kth(root, k);
}
int main() {
	node* root = new node(4);//构建一颗二叉搜索树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(6);
	l1->left = new node(1);
	l1->right = new node(3);
	r1->left = new node(5);
	r1->right = new node(7);
	node* test = check(root, 1);
	printf("第一个节点:%d\n", test == nullptr ? -1 : test->val);
	test = check(root, 5);
	printf("第五个节点:%d\n", test == nullptr ? -1 : test->val);
	return 0;
}

运行结果:

第一个节点:1 第五个节点:5

从上到下打印二叉树

题目:不分行从上到下打印二叉树。从上到下打印二叉树的那个节点,同一层的节点按照从左到右的顺序打印。

在这里插入图片描述

不同于熟悉的前中后序遍历或按层遍历。每次打印一个节点的时候,如果该节点有子节点,则把该子节点放到一个队列的队尾。接下来到队列的头部取出最早进入队列的几点,重复前面的打印操作,直到队列中所有节点都被打印出来。即就是一个bfs。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
void PrintFromTopToBottom(node* root) {//从上到下打印
	if (root == nullptr)return;
	queue<node*>q;
	q.push(root);
	while (!q.empty()) {
		node* cur = q.front();
		q.pop();
		printf("%d ", cur->val);
		if (cur->left != nullptr)//从左到右
			q.push(cur->left);
		if (cur->right != nullptr)
			q.push(cur->right);
	}
	printf("\n");
}
int main() {
	node* root = new node(1);//构建一颗二叉树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(3);
	l1->left = new node(4);
	l1->right = new node(5);
	r1->left = new node(6);
	r1->right = new node(7);
	PrintFromTopToBottom(root);//调用
	return 0;
}

运行结果:

1 2 3 4 5 6 7

二叉树的镜像

题目:输入一颗二叉树,输出它的镜像。

在这里插入图片描述

通过画图分析,两棵树根节点相同,但左右子节点交换了位置,现在交换左右子节点,然后发现这两个节点的左右子节点位置还是不同,如此递归下去一直交换即可。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
void PrintFromTopToBottom(node* root) {//从上到下打印
	if (root == nullptr)return;
	queue<node*>q;
	q.push(root);
	while (!q.empty()) {
		node* cur = q.front();
		q.pop();
		printf("%d ", cur->val);
		if (cur->left != nullptr)//从左到右
			q.push(cur->left);
		if (cur->right != nullptr)
			q.push(cur->right);
	}
	printf("\n");
}
void Mirror(node* root) {//镜像二叉树
	if (root == nullptr)
		return;
	if (root->left == nullptr && root->right == nullptr)
		return;
	swap(root->left, root->right);//交换左右子节点
	Mirror(root->left);//递归下去
	Mirror(root->right);
}
int main() {
	node* root = new node(1);//构建一颗二叉树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(3);
	l1->left = new node(4);
	l1->right = new node(5);
	r1->left = new node(6);
	r1->right = new node(7);
	PrintFromTopToBottom(root);
	Mirror(root);
	PrintFromTopToBottom(root);
	return 0;
}

运行结果:

1 2 3 4 5 6 7 1 3 2 7 6 5 4

对称的二叉树

题目:实现一个函数,用来判断一颗二叉树是不是对称的。如果一颗二叉树和它的镜像一样,那么它就是对称的。

在这里插入图片描述

在三种遍历方法中(前序、中序和后序)都是先遍历左节点在遍历右节点,如果我们先遍历右节点再遍历左节点,然后再和前序的先左后右比较,就可以判断是否对称了。

比如第一棵树前序先左后右:{1,2,3,2,4,3},前序先右后左:{1,2,3,4,2,4,3},两序列一样,即可判为对称。

如第二棵树前序先左后右:{1,2,3,4,2,4,5},前序先右后左:{1,2,5,4,2,4,3},两序列不同,即不对称。

但注意第三棵树情况,两者都是{1,2,2,2}但明显是不对成的,故需要加上空指针来判断。前序先左后右:{1,2,2,null,null,2,null,null},前序先右后左:{1,2,null,null,2,null,2},然后判断为不对称。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
bool isSymmetrical(node* r1, node* r2) {//即两棵树是否互为镜像
	if (r1 == nullptr && r2 == nullptr)
		return true;
	if (r1 == nullptr || r2 == nullptr)
		return false;
	if (r1->val != r2->val)
		return false;
	return isSymmetrical(r1->left, r2->right)
		&& isSymmetrical(r1->right, r2->left);
}
bool isSymmetrical(node* root) {//判断一棵树是否对称
	return isSymmetrical(root, root);
}
int main() {
	node* root = new node(1);//构建一颗对称二叉树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(2);
	l1->left = new node(3);
	l1->right = new node(4);
	r1->left = new node(4);
	r1->right = new node(3);
	if (isSymmetrical(root))
		printf("对称");
	else 
		printf("不对称");
	return 0;
}

运行结果:

对称

树的子结构

题目:输入两颗二叉A和B,判断B是不是A的子结构。

我们可以分成两步,首先找到根节点值一样的节点,然后判断以该节点为根节点的子树是否包含一样的结构。其实主要还是考察树的遍历,用递归即可完成。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
bool check(node* r1, node* r2) {
	if (r2 == nullptr)
		return true; //注意空指针
	if (r1 == nullptr)
		return false;
	if (r1->val != r2->val)
		return false;
	return check(r1->left, r2->left) && check(r1->right, r2->right);
}
bool HasSubtree(node* r1, node* r2) {
	bool ans = false;
	if (r1 != nullptr && r2 != nullptr) {
		if (r1->val == r2->val) //找到值相同的节点
			ans = check(r1, r2);//然后判断是否包含一样结构
		if (ans == false) //剪枝,是子结构就不必再继续找了
			ans = HasSubtree(r1->left, r2);
		if (ans == false)
			ans = HasSubtree(r1->right, r2);
	}
	return ans;
}
int main() {
	node* root = new node(1);//构建一颗二叉树
	node* l1 = root->left = new node(2);
	node* r1 = root->right = new node(1);
	l1->left = new node(4);
	l1->right = new node(3);
	r1->left = new node(2);
	r1->right = new node(3);
	node* part = new node(1);//构建子树
	part->left = new node(2);
	part->right = new node(3);
	if (HasSubtree(root, part))
		printf("是子树");
	else
		printf("不是子树");
	return 0;
}

运行结果:

是子树

重建二叉树

题目:输入某二叉树的前序遍历和中序遍历结果,请重建该二叉树,假设输入的前序遍历和中序遍历的结果中不含重复的数字。

在前序遍历中,第一个数字总是树的根节点的值,而在中序遍历中,根节点的值在序列中间,左子树节点的值位于根节点值得左边,右子树节点的值位于根节点值得右边,因此需要扫描中序遍历序列,才能找到根节点得值。

在这里插入图片描述

分别找到左、右子树的前序和中序遍历序列后,我们可以用同样的方法分别构建左右子树,即可以用递归完成。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l=nullptr, node* r=nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
//四个参数:前序开始位置、前序结束位置、中序开始位置、中序结束位置
node* Construct(int* startPre,int* endPre,int* startIn,int* endIn) {//根据前中序建树
	int rootVal = startPre[0];//根节点是前序遍历第一个
	node* root = new node(rootVal);
	if (startPre == endPre) { //递归出口:只一个节点
		if (startIn == endIn && *startPre == *startIn)
			return root;
		//else throw exception();//若输入不确保正确则抛出异常
	}
	int* rootIn = startIn; //在中序遍历中找到根节点的值
	while (rootIn <= endIn && *rootIn != rootVal)
		rootIn++;
	//if (rootIn == endIn && *rootIn != rootVal)
	//	throw exception();//找不到抛异常
	int leftLen = rootIn - startIn;//左子树长度
	int* leftPreEnd = startPre + leftLen;
	if (leftLen > 0) { //构建左子树
		root->left = Construct(startPre + 1, leftPreEnd, startIn, rootIn - 1);
	}
	if (leftLen < endPre - startPre) {//构建右子树
		root->right = Construct(leftPreEnd + 1, endPre, rootIn + 1, endIn);
	}
	return root;
}
void post(node* root) {//后序遍历打印
	if (root == nullptr)return;
	post(root->left);
	post(root->right);
	printf("%d ", root->val);
}
int main() {
	int pre[10] = { 1,2,4,3,5,7,6,8 };
	int in[10] = { 2,4,1,7,5,3,6,8 };
	node* p = Construct(pre, pre + 7, in, in + 7);
	post(p);//打印后序检查
	return 0;
}

运行结果:

4 2 7 5 8 6 3 1

二叉树的下一个节点

题目:给定一颗二叉树和其中一个节点,如何找出中序遍历序列的下一个节点?树中的节点除了有两个分别指向左右节点的指针,还有一个指向父节点的指针。

其实是考察对中序遍历的理解。首先向下考虑,中序遍历中它的下一个节点不可能在左子树中考虑,所以如果一个节点有右子树,那么它的下一个节点就是它右子树中的最左节点。

其次向上考虑(即无右子树),如果节点是它父节点的左子节点,那么它的下一个节点就是它的父节点。如果节点是它父节点的右子节点,这时就需要沿着指向父节点的指针一直向上遍历,直到找到一个是它父节点的左子节点的节点。如果存在则这个节点的父节点是答案,否则他就是最后一个节点,无下一个节点。

同样的前序、后序的下一个节点同理,举一反三。

在这里插入图片描述


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node* parent;//父节点
	node(int v,node*p=nullptr) {
		val = v;
		left = nullptr;
		right = nullptr;
		parent = p;
	}
};
node* getnext(node* p) {
	if (p == nullptr)
		return nullptr;
	node* next = nullptr;
	if (p->right != nullptr) {//有右子树
		node* r = p->right;//找最左
		while (r->left != nullptr)
			r = r->left;
		next = r;
	}
	else if(p->parent!=nullptr){//无右子树且有父节点
		node* cur = p;
		node* par = p->parent;
		while (par != nullptr && cur == par->right) {
			cur = par; //向上找到一个节点是它父节点的左节点
			par = par->parent;
		}
		next = par;
	}
	return next;
}
int main() {
	node* root = new node(1);//建树
	node* p2 = new node(2,root);
	node* p4 = new node(4, p2);
	p2->right = p4;
	node* p7 = new node(7, p4);
	node* p8 = new node(8, p4);
	p4->left = p7, p4->right = p8;
	node* p3 = new node(3, root);
	root->left = p2, root->right = p3;
	node* p5 = new node(5, p3);
	node* p6 = new node(6, p3);
	p3->left = p5, p3->right = p6;
	node* test = getnext(p4);
	printf("节点4的下一个节点:%d\n", test == nullptr ? -1 : test->val);
	test = getnext(p5);
	printf("节点5的下一个节点:%d\n", test == nullptr ? -1 : test->val);
	test = getnext(p8);
	printf("节点8的下一个节点:%d\n", test == nullptr ? -1 : test->val);
	test = getnext(p6);
	printf("节点6的下一个节点:%d\n", test == nullptr ? -1 : test->val);
	return 0;
}

运行结果如下:

节点4的下一个节点:8 节点5的下一个节点:3 节点8的下一个节点:1 节点6的下一个节点:-1

二叉搜索树的后序遍历路径

题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。假设输入的数组任意两个数字不相同。

在后序遍历中,最后一个节点是根节点,而且因为是二叉搜索树,左子树比它小,右子树比它大,所以又可以划分出左右子树两部分,然后在划分出来的子树中,同样是最后一个是根节点,递归处理即可。

其实通过二叉搜索树隐含条件来判断,相当于给一个二叉树的后序和中序求是否能建树,同前面重建二叉树那题,换汤不换药。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l = nullptr, node* r = nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
bool verify(int s[], int len) {
	if (len <= 0 || s == nullptr)
		return false;
	int root = s[len - 1];//根节点
	int i = 0;
	while (i < len - 1) {//找左子树中小于根节点的值
		if (s[i] > root)
			break;
		i++;
	}
	int j = i;
	while (j < len - 1) {
		if (s[j++] < root)
			return false;
	}
	bool l = true, r = true;
	if (i > 0)//验证左子树
		l = verify(s, i);
	if (i < len - 1)//验证右子树
		r = verify(s + i, len - i - 1);
	return (l && r);
}
int main() {
	int a[10] = { 1,3,2,5,7,6,4 };
	printf("数组a%s二叉搜索树的后序序列\n", verify(a,7) ? "是" : "不是");
	int b[10] = { 3,4,1,2 };
	printf("数组b%s二叉搜索树的后序序列\n", verify(b, 4) ? "是" : "不是");
	return 0;
}

运行结果如下:

数组a是二叉搜索树的后序序列数组b不是二叉搜索树的后序序列

二叉树中和为某一值的路径

题目:输入一颗二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径。从树的根节点开始往下一直到叶节点所经过的节点形成一条路径。

首先由于路径的定义是从根节点到叶节点,而只有前序遍历中是先访问根节点的。当前序遍历访问到某一节点时,我们把该节点添加到路径上,并累加该节点的值。如果节点是叶节点,此时判断累加值是否符合输入整数,符合则打印出路径。当访问结束后,要在路径上删除该节点,并减去该节点的值。即一个简单的dfs。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l = nullptr, node* r = nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
void dfs(node* root, vector<int>path,int sum,int cur) {
	if (root == nullptr)
		return;
	cur += root->val;
	path.push_back(root->val);
	if (cur == sum && root->left == nullptr && root->right == nullptr) {
		//值相同且是叶节点
		for (int i = 0; i < path.size(); i++)
			printf("%d ", path[i]);
		printf("\n");
	}
	dfs(root->left, path, sum, cur);
	dfs(root->right, path, sum, cur);
	path.pop_back();//回溯
}
int main() {
	node* root = new node(10);
	node* l = root->left = new node(3);
	root->right = new node(5);
	l->left = new node(-2);
	l->right = new node(2);
	vector<int>v;
	dfs(root, v, 15, 0);
	return 0;
}

运行结果如下:

10 3 2 10 5

二叉搜索树与双向链表

题目:输入一颗二叉搜索树,将该二叉树转换成一个排序的双向链表。要求不能创建任何新的节点,只能调整书中节点指针的指向。

在这里插入图片描述

二叉搜索树的左节点小于父节点,右节点大于父节点,所以可以将原先指向左子节点的指针调整为列表中指向前一个节点的指针,原先指向右节点的指针调整为指向后一个节点的指针。

由于转换后的链表是排好序的,所以我们可以中序遍历树的节点,当遍历到根节点是,可以把树拆成三部分,4号节点、根节点为2的左子树、根节点为6的右子树。同时根据定义,将它与左子树最大节点链接起来,与右子树最小节点链接起来。而此时的左子树俨然就是一个排序的链表,接着去遍历右子树即可,可不还是递归吗。


#include<bits/stdc++.h>
using namespace std;
struct node {//树节点定义
	int val;
	node* left;//左子节点
	node* right;//右子节点
	node(int v, node* l = nullptr, node* r = nullptr) {
		val = v;
		left = l;
		right = r;
	}
};
void dfs(node* p, node** t) {
	if (p == nullptr)
		return;
	node* cur = p;//备份
	if (cur->left != nullptr)//中序
		dfs(cur->left, t);
	cur->left = *t;//根节点左指针指向左子树最后一个节点
	if (*t != nullptr)
		(*t)->right = cur;//左子树最后一个节点右指针指向根节点
	*t = cur;//更新最后一个节点
	if (cur->right != nullptr)
		dfs(cur->right, t);
}
node* toList(node* root) {
	node* tail = nullptr;//指向双向链表尾节点
	dfs(root, &tail);
	node* head = tail; //头节点
	while (head != nullptr && head->left != nullptr)
		head = head->left; //left指向前一个
	return head;
}
int main() {
	node* root = new node(4);//构建一颗二叉搜索树
	node* l = root->left = new node(2);
	l->left = new node(1);
	l->right = new node(3);
	node* r = root->right = new node(6);
	r->left = new node(5);
	r->right = new node(7);
	node* list = toList(root);
	while (list->right != nullptr) {
		printf("%d ", list->val);
		list = list->right;
	}
	printf("%d\n",list->val);
	while (list != nullptr) {
		printf("%d ", list->val);
		list = list->left;
	}
	return 0;

运行结果:

1 2 3 4 5 6 7 7 6 5 4 3 2 1

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注编程网的更多内容!

--结束END--

本文标题: java二叉树面试题详解

本文链接: https://www.lsjlt.com/news/130759.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • java二叉树面试题详解
    目录二叉树的深度二叉搜索树的第k大节点从上到下打印二叉树二叉树的镜像对称的二叉树树的子结构重建二叉树二叉树的下一个节点二叉搜索树的后序遍历路径二叉树中和为某一值的路径二叉搜索树与双向...
    99+
    2022-11-12
  • java面试题解LeetCode27二叉树的镜像实例
    目录正文解题思路方法一:递归法方法二:辅助栈(或队列)正文 LeetCode27. 二叉树的镜像 请完成一个函数,输入一个二叉树,该函数输出它的镜像。 例如输入: 4 /2 7 ...
    99+
    2023-01-05
    java面试LeetCode二叉树镜像 java面试LeetCode
  • java二叉树面试题的示例分析
    小编给大家分享一下java二叉树面试题的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!二叉树的深度题目:输入一颗二叉树的根节点,求该树的的深度。输入一颗二...
    99+
    2023-06-20
  • 关于Java的二叉树、红黑树、B+树详解
    目录1、二叉查找树2、平衡二叉查找树3、红黑树:4、 B树:5、 B+树6、红黑树 VS B+树数组和链表是常用的数据结构,数组虽然查找快(有序数组可以通过二分法查找),但是插入和删...
    99+
    2023-05-20
    Java二叉树 Java红黑树 JavaB+树
  • Java中关于二叉树的概念以及搜索二叉树详解
    目录一、二叉树的概念为什么要使用二叉树?树是什么?树的相关术语!根节点路径父节点子节点叶节点子树访问层(深度)关键字满二叉树完全二叉树二叉树的五大性质二、搜索二叉树插入删除hello...
    99+
    2022-11-12
  • java二叉树的遍历方式详解
    目录一、前序遍历(递归和非递归)二、中序遍历(递归和非递归)三、后序遍历(递归和非递归)四、层序遍历总结一、前序遍历(递归和非递归) 前序遍历就是先遍历根再遍历左之后是右 根左右 ...
    99+
    2022-11-12
  • Java超详细讲解排序二叉树
    目录排序二叉树概念排序二叉树类的定义添加节点中序遍历查找节点查找某一节点的父节点删除节点排序二叉树概念 二叉排序树(Binary Sort Tree),又称二叉查找树(Binary ...
    99+
    2022-11-13
  • C++超详细讲解树与二叉树
    目录树树的定义树的名词解释树的表示树的存储结构二叉树的概念及结构二叉树的概念二叉树的性质二叉树的存储结构顺序存储结构链式存储结构树 树的定义 Q:什么是树 A:树是一种 非线性 的数...
    99+
    2022-11-13
  • java基础二叉搜索树图文详解
    目录概念直接实践准备工作:定义一个树节点的类,和二叉搜索树的类。搜索二叉树的查找功能搜索二叉树的插入操作搜索二叉树 删除节点的操作 - 难点性能分析总程序 - 模拟实现二叉搜索树和 ...
    99+
    2022-11-13
  • 详解Java 二叉树的实现和遍历
    目录什么是二叉树二叉树建树前序建树中序建树后序建树二叉树的遍历什么是二叉树 简单理解为对于一个节点来说,最多拥有一个上级节点,同时最多具备左右两个下级节点的数据结构。 由于很多排序算...
    99+
    2022-11-13
  • C++LeetCode543题解二叉树直径
    目录LeetCode 543.二叉树的直径方法一:深度优先搜索求二叉树的深度AC代码C++LeetCode 543.二叉树的直径 力扣题目链接:leetcode...
    99+
    2022-12-16
    C++ 二叉树直径 C++ LeetCode
  • C++树之遍历二叉树实例详解
    在讲遍历之前,我们要先创建一个树: #include <iostream> using namespace std; typedef struct node; ty...
    99+
    2022-11-11
  • 详解Java数据结构之平衡二叉树
    目录什么是二叉搜索树平衡二叉搜索树平衡二叉搜索树建树程序计算每个节点的高度计算每个节点的平衡因子合并二叉树旋转调整函数整体代码什么是二叉搜索树 简单来说,就是方便搜索的二叉树,是一种...
    99+
    2022-11-13
  • Java数据结构之二叉搜索树详解
    目录前言性质实现节点结构初始化插入节点查找节点删除节点最后前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不...
    99+
    2022-11-13
  • Java二叉树的四种遍历方式详解
    二叉树的四种遍历方式: 二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使得每个结点被访问依次且仅被访...
    99+
    2022-11-12
  • Java实现二叉树的基本操作详解
    目录1. 二叉树结点的构成2. 二叉树的遍历2.1 前序遍历2.2 中序遍历2.3 后序遍历3. 获取整棵二叉树的节点个数4. 获取二叉树叶子节点的个数5. 获取第K层节点的个数6....
    99+
    2022-11-13
    Java二叉树操作 Java二叉树
  • 剑指Offer之Java算法习题精讲二叉树与N叉树
    题目一  解法 class Solution { StringBuffer sb = new StringBuffer(); List<String&g...
    99+
    2022-11-13
  • C语言平衡二叉树详解
    目录调整措施:一、单旋转二、双旋转AVL树的删除操作:删除分为以下几种情况:1.要删除的节点是当前根节点T。2、要删除的节点元素值小于当前根节点T值,在左子树中进行删除。3、要删除的...
    99+
    2022-11-12
  • Java二叉树中LCA问题解决方法两则
    目录寻找公共祖先方法一-普通解法方法二-子问题寻找公共祖先 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的...
    99+
    2022-12-08
    Java二叉树中LCA问题 Java LCA问题
  • Java实现二叉查找树的增删查详解
    目录定义增加节点查询节点删除节点定义 二叉查找树(ADT)是一个具有对于树种的某个节点X,它的左节点都比X小,它的右节点都比X大的二叉树。如下就是一个符合 要求的二叉查找树: 增加...
    99+
    2022-11-13
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作