iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >python实现梯度下降求解逻辑回归
  • 661
分享到

python实现梯度下降求解逻辑回归

2024-04-02 19:04:59 661人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

本文实例为大家分享了python实现梯度下降求解逻辑回归的具体代码,供大家参考,具体内容如下 对比线性回归理解逻辑回归,主要包含回归函数,似然函数,梯度下降求解及代码实现 线性回归

本文实例为大家分享了python实现梯度下降求解逻辑回归的具体代码,供大家参考,具体内容如下

对比线性回归理解逻辑回归,主要包含回归函数,似然函数,梯度下降求解及代码实现

线性回归

1.线性回归函数

似然函数的定义:给定联合样本值X下关于(未知)参数\theta 的函数

似然函数:什么样的参数跟我们的数据组合后恰好是真实值     

2.线性回归似然函数

对数似然:

 3.线性回归目标函数

(误差的表达式,我们的目的就是使得真实值与预测值之前的误差最小)

(导数为0取得极值,得到函数的参数)

逻辑回归

逻辑回归是在线性回归的结果外加一层Sigmoid函数

1.逻辑回归函数

2.逻辑回归似然函数

前提数据服从伯努利分布

对数似然:

引入 转变为梯度下降任务,逻辑回归目标函数

梯度下降法求解

 我的理解就是求导更新参数,达到一定条件后停止,得到近似最优解

代码实现

Sigmoid函数

def sigmoid(z):    
​​​​​​​   return 1 / (1 + np.exp(-z))

预测函数

def model(X, theta):    
    return sigmoid(np.dot(X, theta.T))

目标函数

def cost(X, y, theta):    
     left = np.multiply(-y, np.log(model(X, theta)))    
     right = np.multiply(1 - y, np.log(1 - model(X, theta)))    
​​​​​​​     return np.sum(left - right) / (len(X))

梯度

def gradient(X, y, theta):    
  grad = np.zeros(theta.shape)    
  error = (model(X, theta)- y).ravel()    
  for j in range(len(theta.ravel())): #for each parmeter        
     term = np.multiply(error, X[:,j])        
     grad[0, j] = np.sum(term) / len(X)    
​​​​​​​   return grad

梯度下降停止策略

STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
 
def stopCriterion(type, value, threshold):
    # 设定三种不同的停止策略
    if type == STOP_ITER:  # 设定迭代次数
        return value > threshold
    elif type == STOP_COST:  # 根据损失值停止
        return abs(value[-1] - value[-2]) < threshold
    elif type == STOP_GRAD:  # 根据梯度变化停止
        return np.linalg.nORM(value) < threshold

样本重新洗牌

import numpy.random
#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y

梯度下降求解

def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解
 
    init_time = time.time()
    i = 0  # 迭代次数
    k = 0  # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape)  # 计算的梯度
    costs = [cost(X, y, theta)]  # 损失值
 
    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        k += batchSize  # 取batch数量个数据
        if k >= n:
            k = 0
            X, y = shuffleData(data)  # 重新洗牌
        theta = theta - alpha * grad  # 参数更新
        costs.append(cost(X, y, theta))  # 计算新的损失
        i += 1
 
        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break
 
    return theta, i - 1, costs, grad, time.time() - init_time

完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import numpy.random
import time
 
 
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
 
 
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))
 
 
def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))
 
 
def gradient(X, y, theta):
    grad = np.zeros(theta.shape)
    error = (model(X, theta) - y).ravel()
    for j in range(len(theta.ravel())):  # for each parmeter
        term = np.multiply(error, X[:, j])
        grad[0, j] = np.sum(term) / len(X)
    return grad
 
 
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
 
 
def stopCriterion(type, value, threshold):
    # 设定三种不同的停止策略
    if type == STOP_ITER:  # 设定迭代次数
        return value > threshold
    elif type == STOP_COST:  # 根据损失值停止
        return abs(value[-1] - value[-2]) < threshold
    elif type == STOP_GRAD:  # 根据梯度变化停止
        return np.linalg.norm(value) < threshold
 
 
# 洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols - 1]
    y = data[:, cols - 1:]
    return X, y
 
 
def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解
 
    init_time = time.time()
    i = 0  # 迭代次数
    k = 0  # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape)  # 计算的梯度
    costs = [cost(X, y, theta)]  # 损失值
 
    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        k += batchSize  # 取batch数量个数据
        if k >= n:
            k = 0
            X, y = shuffleData(data)  # 重新洗牌
        theta = theta - alpha * grad  # 参数更新
        costs.append(cost(X, y, theta))  # 计算新的损失
        i += 1
 
        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break
 
    return theta, i - 1, costs, grad, time.time() - init_time
 
 
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    # import pdb
    # pdb.set_trace()
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize == n:
        strDescType = "Gradient"  # 批量梯度下降
    elif batchSize == 1:
        strDescType = "Stochastic"  # 随机梯度下降
    else:
        strDescType = "Mini-batch ({})".format(batchSize)  # 小批量梯度下降
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER:
        strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST:
        strStop = "costs change < {}".format(thresh)
    else:
        strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12, 4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta
 
 
path = 'data' + os.sep + 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
positive = pdData[pdData['Admitted'] == 1]
negative = pdData[pdData['Admitted'] == 0]
 
# 画图观察样本情况
fig, ax = plt.subplots(figsize=(10, 5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
 
pdData.insert(0, 'Ones', 1)
 
# 划分训练数据与标签
orig_data = pdData.values
cols = orig_data.shape[1]
X = orig_data[:, 0:cols - 1]
y = orig_data[:, cols - 1:cols]
# 设置初始参数0
theta = np.zeros([1, 3])
 
# 选择的梯度下降方法是基于所有样本的
n = 100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
 
from sklearn import preprocessing as pp
 
# 数据预处理
scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
 
runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002 / 5, alpha=0.001)
runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002 * 2, alpha=0.001)
 
 
# 设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
 
 
# 计算精度
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print('accuracy = {0}%'.format(accuracy))

逻辑回归的优缺点

优点

  • 形式简单,模型的可解释性非常好。从特征的权重可以看到不同的特征对最后结果的影响,某个特征的权重值比较高,那么这个特征最后对结果的影响会比较大。
  • 模型效果不错。在工程上是可以接受的(作为baseline),如果特征工程做的好,效果不会太差,并且特征工程可以大家并行开发,大大加快开发的速度。
  • 训练速度较快。分类的时候,计算量仅仅只和特征的数目相关。并且逻辑回归的分布式优化sgd发展比较成熟,训练的速度可以通过堆机器进一步提高,这样我们可以在短时间内迭代好几个版本的模型。
  • 资源占用小,尤其是内存。因为只需要存储各个维度的特征值。
  • 方便输出结果调整。逻辑回归可以很方便的得到最后的分类结果,因为输出的是每个样本的概率分数,我们可以很容易的对这些概率分数进行cutoff,也就是划分阈值(大于某个阈值的是一类,小于某个阈值的是一类)。

缺点

  • 准确率并不是很高。因为形式非常的简单(非常类似线性模型),很难去拟合数据的真实分布。
  • 很难处理数据不平衡的问题。举个例子:如果我们对于一个正负样本非常不平衡的问题比如正负样本比 10000:1.我们把所有样本都预测为正也能使损失函数的值比较小。但是作为一个分类器,它对正负样本的区分能力不会很好。
  • 处理非线性数据较麻烦。逻辑回归在不引入其他方法的情况下,只能处理线性可分的数据,或者进一步说,处理二分类的问题 。
  • 逻辑回归本身无法筛选特征。有时候,我们会用gbdt来筛选特征,然后再上逻辑回归。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

--结束END--

本文标题: python实现梯度下降求解逻辑回归

本文链接: http://www.lsjlt.com/news/119727.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • python实现梯度下降求解逻辑回归
    本文实例为大家分享了python实现梯度下降求解逻辑回归的具体代码,供大家参考,具体内容如下 对比线性回归理解逻辑回归,主要包含回归函数,似然函数,梯度下降求解及代码实现 线性回归 ...
    99+
    2024-04-02
  • python如何实现梯度下降求解逻辑回归
    线性回归1.线性回归函数似然函数的定义:给定联合样本值X下关于(未知)参数 的函数似然函数:什么样的参数跟我们的数据组合后恰好是真实值 2.线性回归似然函数对数似然: 3.线性回归目标函数(误差的表达式,我们的目的就是使得真实值与预...
    99+
    2023-05-14
    Python
  • python怎么实现梯度下降求解逻辑回归
    今天小编给大家分享一下python怎么实现梯度下降求解逻辑回归的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。线性回归1.线性...
    99+
    2023-07-06
  • python机器学习逻辑回归随机梯度下降法
    目录写在前面随机梯度下降法参考文献写在前面 随机梯度下降法就在随机梯度上。意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的。全批量梯度下降是从一个点接着一点是有顺序的,全...
    99+
    2024-04-02
  • python中逻辑回归随机梯度下降法怎么用
    这篇文章主要为大家展示了“python中逻辑回归随机梯度下降法怎么用”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“python中逻辑回归随机梯度下降法怎么用”这篇文章吧。随机梯度下降法随机梯度下...
    99+
    2023-06-25
  • Python实现多元线性回归的梯度下降法
    目录1. 读取数据2.定义代价函数3. 梯度下降4.可视化展示1. 读取数据 首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可。这里以data.csv为例,这里做的是二...
    99+
    2024-04-02
  • 使用Python实现小批量梯度下降算法的代码逻辑
    让theta=模型参数和max_iters=时期数。对于itr=1,2,3,...,max_iters:对于mini_batch(X_mini,y_mini): 批量X_mini的前向传递: 1、对小批量进行预测 2、使用参数的当...
    99+
    2024-01-22
    算法的概念
  • Python实现逻辑回归(Logistic Regression)
    💥 项目专栏:【Python实现经典机器学习算法】附代码+原理介绍 文章目录 前言一、基于原生Python实现逻辑回归算法二、逻辑回归模型的算法原理三、算法实现3.1 ...
    99+
    2023-08-31
    python 逻辑回归 机器学习 人工智能 sklearn 原力计划
  • Logistic回归(逻辑回归)及python代码实现
    文章目录 Logistic(Logistic Regression,LR)回归原理讲解参数计算 python代码实现生成数据集不使用其他库实现定义激活函数(标准Logistic函数即Sig...
    99+
    2023-10-24
    回归 逻辑回归 人工智能 python 机器学习 分类
  • pytorch实现逻辑回归
    本文实例为大家分享了pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 一、pytorch实现逻辑回归 逻辑回归是非常经典的分类算法,是用于分类任务,如垃圾分类任务,情感...
    99+
    2024-04-02
  • pytorch逻辑回归实现步骤详解
    目录1. 导入库2. 定义数据集2.1 生成数据2.2 设置label3. 搭建网络+优化器4. 训练5. 绘制决策边界6. 代码1. 导入库 机器学习的任务分为两大类:分类和回归 ...
    99+
    2024-04-02
  • Pytorch实现逻辑回归分类
    本文实例为大家分享了Pytorch实现逻辑回归分类的具体代码,供大家参考,具体内容如下 1、代码实现 步骤: 1.获得数据2.建立逻辑回归模型3.定义损失函数4.计算损失函数5.求解...
    99+
    2024-04-02
  • 基于numpy实现逻辑回归
    本文实例为大家分享了基于numpy实现逻辑回归的具体代码,供大家参考,具体内容如下 交叉熵损失函数;sigmoid激励函数基于numpy的逻辑回归的程序如下: import num...
    99+
    2024-04-02
  • 基于Pytorch实现逻辑回归
    本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下 1.逻辑回归  线性回归表面上看是“回归问题”,实际上处理的问题...
    99+
    2024-04-02
  • 机器学习(二):线性回归之梯度下降法
    文章目录 专栏导读 1、梯度下降法原理 2、梯度下降法原理代码实现 3、sklearn内置模块实现 专栏导读 ✍ 作者简介:i阿极,CSDN Python领域新星创作者,...
    99+
    2023-09-07
    机器学习 线性回归 python 梯度下降法
  • Pyspark线性回归梯度下降交叉验证知识点详解
    我正在尝试在 pyspark 中的 SGD 模型上执行交叉验证,我正在使用pyspark.mllib.regression,ParamGridBuilder和CrossValidat...
    99+
    2024-04-02
  • PyTorch实现多维度特征输入逻辑回归
    目录一、实现过程1、准备数据2、设计模型4、训练过程5、结果展示二、参考文献一、实现过程 1、准备数据 本文数据采取文献[1]给出的数据集,该数据集前8列为特征,最后1列为标签(0/...
    99+
    2024-04-02
  • pytorch使用nn.Moudle实现逻辑回归
    本文实例为大家分享了pytorch使用nn.Moudle实现逻辑回归的具体代码,供大家参考,具体内容如下 内容 pytorch使用nn.Moudle实现逻辑回归 问题 loss下降不...
    99+
    2024-04-02
  • python的numpy模块实现逻辑回归模型
    使用python的numpy模块实现逻辑回归模型的代码,供大家参考,具体内容如下 使用了numpy模块,pandas模块,matplotlib模块 1.初始化参数 def initi...
    99+
    2024-04-02
  • Python实现梯度下降法的示例代码
    目录1.首先读取数据集2.初始化相关参数3.定义计算代价函数–>MSE4.梯度下降5.执行1.首先读取数据集 导包并读取数据,数据自行任意准备,只要有两列,可以分为...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作