iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >Python实现多元线性回归的梯度下降法
  • 663
分享到

Python实现多元线性回归的梯度下降法

2024-04-02 19:04:59 663人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录1. 读取数据2.定义代价函数3. 梯度下降4.可视化展示1. 读取数据 首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可。这里以data.csv为例,这里做的是二

1. 读取数据

首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可。这里以data.csv为例,这里做的是二元回归。导入相关库,及相关代码如下。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3D import Axes3D


data = np.loadtxt("data.csv", delimiter=",")
# 提取特征数据与标签
x_data = data[:,0:-1]
y_data = data[:,-1]

2.定义代价函数

回归模型形如:

接下来我们需要初始化相关参数,并定义出代价函数。因为存在多个系数参数,这里代价函数的写法与一元回归时的情况略有不同,稍微有所调整。具体如下:

# 初始化一系列参数
# 截距
theta0 = 0
# 系数
theta1 = 0
theta2 = 0

# 学习率
learning_rate = 0.0001
# 初始化迭代次数
n_iterables = 1000


# 定义代价函数(损失函数)
def compute_mse(theta0, theta1, theta2, x_data, y_data):
    total_error = 0
    for i in range(len(x_data)):
        # 计算损失 真实值:y_data  预测值h(x)=theta0 + theta1*x1 + theta2*x2
        total_error += (y_data[i] - (theta0 + theta1 * x_data[i, 0] + theta2 * x_data[i, 1])) ** 2

    mse_ = total_error / len(x_data) / 2
    return mse_

3. 梯度下降

多元回归的梯度下降与一元回归的差不多,在一元回归中只需要求一个导数,而现在求多个偏导数。代码过程如下:

def gradient_descent(x_data, y_data, theta0, theta1, theta2, learning_rate, n_iterables):
    m = len(x_data)

    # 循环 --> 迭代次数
    for i in range(n_iterables):
        # 初始化 theta0 theta1 theta2 的偏导值
        theta0_grad = 0
        theta1_grad = 0
        theta2_grad = 0

        # 计算偏导的总和再平均
        # 遍历m次
        for j in range(m):
            theta0_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j])
            theta1_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j]) * x_data[
                j, 0]
            theta2_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j]) * x_data[
                j, 1]

        # 更新theta
        theta0 = theta0 - (learning_rate * theta0_grad)
        theta1 = theta1 - (learning_rate * theta1_grad)
        theta2 = theta2 - (learning_rate * theta2_grad)
    return theta0, theta1, theta2


print(f"开始:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")
print("开始运行")
theta0,theta1,theta2 = gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables)
print(f"迭代{n_iterables}次后:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")

执行结果输出如下:

1000次迭代之后,损失值由23.64变为0.3865。

4.可视化展示

可视化展示常常作为机器学习过程的补充,可以使得机器学习的效果更为生动,直观。

# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)
plt.show()


# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)

# 绘制预期平面
# 构建x
x_0 = x_data[:,0]
x_1 = x_data[:,1]

# 生成网格矩阵
x_0,x_1 = np.meshgrid(x_0,x_1)

y_hat = theta0 + theta1*x_0 + theta2*x_1

# 绘制3D图
ax.plot_surface(x_0,x_1,y_hat)

# 设置标签
ax.set_xlabel("Miles")
ax.set_ylabel("nums")
ax.set_zlabel("Time")

plt.show()

散点图输出如下:

加上拟合回归面后如图所示:

到此这篇关于python实现多元线性回归的梯度下降法的文章就介绍到这了,更多相关Python梯度下降法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python实现多元线性回归的梯度下降法

本文链接: https://www.lsjlt.com/news/119939.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作