广告
返回顶部
首页 > 资讯 > 后端开发 > Python >详解SpringCloud的负载均衡
  • 480
分享到

详解SpringCloud的负载均衡

2024-04-02 19:04:59 480人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录一.什么是负载均衡 二.负载均衡的简单分类 三.为什么需要做负载均衡 四.SpringCloud如何开启负载均衡 五.IRule 1.RandomRule:表示随机策略,它将从服

一.什么是负载均衡

  负载均衡(Load-balance LB),指的是将用户的请求平摊分配到各个服务器上,从而达到系统的高可用。常见的负载均衡软件有Nginx、lvs等。

二.负载均衡的简单分类

  1)集中式LB:集中式负载均衡指的是,在服务消费者(client)和服务提供者(provider)之间提供负载均衡设施,通过该设施把消费者(client)的请求通过某种策略转发给服务提供者(provider),常见的集中式负载均衡是Nginx;

  2)进程式LB:将负载均衡的逻辑集成到消费者(client)身上,即消费者从服务注册中心获取服务列表,获知有哪些地址可用,再从这些地址里选出合适的服务器,springCloud的Ribbon就是一个进程式的负载均衡工具

三.为什么需要做负载均衡

  1) 不做负载均衡,可能导致某台机子负荷太重而挂掉;

  2)导致资源浪费,比如某些机子收到太多的请求,肯定会导致某些机子收到很少请求甚至收不到请求,这样会浪费系统资源。 

四.sprinGCloud如何开启负载均衡

  1)在消费者子工程的pom.xml文件的加入相关依赖(https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon/1.4.7.RELEASE);


<!-- Https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon -->
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
 <version>1.4.7.RELEASE</version>
</dependency>

   消费者需要获取服务注册中心的注册列表信息,把Eureka的依赖包也放进pom.xml


 <dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-starter-eureka-server</artifactId>
   <version>1.4.7.RELEASE</version>
 </dependency>

  2)在application.yml里配置服务注册中心的信息

  在该消费者(client)的application.yml里配置Eureka的信息


#配置Eureka
eureka:
 client:
 #是否注册自己到服务注册中心,消费者不用提供服务
 reGISter-with-eureka: false
 service-url:
  #访问的url
  defaultZone: http://localhost:8002/eureka/

  3)在消费者启动类上面加上注解@EnableEurekaClient


@EnableEurekaClient

  4)在配置文件的Bean上加上


 @Bean
 @LoadBalanced
 public RestTemplate getRestTemplate(){
  return new RestTemplate();
 }

五.IRule

 什么是IRule

  IRule接口代表负载均衡的策略,它的不同的实现类代表不同的策略,它的四种实现类和它的关系如下()

说明一下(idea找Irule的方法:ctrl+n   填入IRule进行查找)

1.RandomRule:表示随机策略,它将从服务清单中随机选择一个服务;


public class RandomRule extends AbstractLoadBalancerRule {
 public RandomRule() {
 }

 @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
 //传入一个负载均衡器
 public Server choose(ILoadBalancer lb, Object key) {
  if (lb == null) {
   return null;
  } else {
   Server server = null;
   while(server == null) {
    if (Thread.interrupted()) {
     return null;
    }
    //通过负载均衡器获取对应的服务列表
    List<Server> upList = lb.getReachableServers();
    //通过负载均衡器获取全部服务列表
    List<Server> allList = lb.getAllServers();
    int serverCount = allList.size();
    if (serverCount == 0) {
     return null;
    }
    //获取一个随机数
    int index = this.chooseRandomInt(serverCount);
    //通过这个随机数从列表里获取服务
    server = (Server)upList.get(index);
    if (server == null) {
     //当前线程转为就绪状态,让出cpu
     Thread.yield();
    } else {
     if (server.isAlive()) {
      return server;
     }

     server = null;
     Thread.yield();
    }
   }

   return server;
  }
 }

  小结:通过获取到的所有服务的数量,以这个数量为标准获取一个(0,服务数量)的数作为获取服务实例的下标,从而获取到服务实例

2.ClientConfigEnabledRoundRobinRule:ClientConfigEnabledRoundRobinRule并没有实现什么特殊的处理逻辑,但是他的子类可以实现一些高级策略, 当一些本身的策略无法实现某些需求的时候,它也可以做为父类帮助实现某些策略,一般情况下我们都不会使用它;


public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule {
 //使用“4”中的RoundRobinRule策略
 RoundRobinRule roundRobinRule = new RoundRobinRule();

 public ClientConfigEnabledRoundRobinRule() {
 }

 public void initWithNiwsConfig(IClientConfig clientConfig) {
  this.roundRobinRule = new RoundRobinRule();
 }

 public void setLoadBalancer(ILoadBalancer lb) {
  super.setLoadBalancer(lb);
  this.roundRobinRule.setLoadBalancer(lb);
 }

 public Server choose(Object key) {
  if (this.roundRobinRule != null) {
   return this.roundRobinRule.choose(key);
  } else {
   throw new IllegalArgumentException("This class has not been initialized with the RoundRobinRule class");
  }
 }
}

  小结:用来作为父类,子类通过实现它来实现一些高级负载均衡策略

1)ClientConfigEnabledRoundRobinRule的子类BestAvailableRule:从该策略的名字就可以知道,bestAvailable的意思是最好获取的,该策略的作用是获取到最空闲的服务实例;


public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule {
 //注入负载均衡器,它可以选择服务实例
 private LoadBalancerStats loadBalancerStats;

 public BestAvailableRule() {
 }

 public Server choose(Object key) {
  //假如负载均衡器实例为空,采用它父类的负载均衡机制,也就是轮询机制,因为它的父类采用的就是轮询机制
  if (this.loadBalancerStats == null) {
   return super.choose(key);
  } else {
   //获取所有服务实例并放入列表里
   List<Server> serverList = this.getLoadBalancer().getAllServers();
   //并发量
   int minimalConcurrentConnections = 2147483647;
   long currentTime = System.currentTimeMillis();
   Server chosen = null;
   Iterator var7 = serverList.iterator();
   //遍历服务列表
   while(var7.hasNext()) {
    Server server = (Server)var7.next();
    ServerStats serverStats = this.loadBalancerStats.getSingleServerStat(server);
    //淘汰掉已经负载的服务实例
    if (!serverStats.isCircuitBreakerTripped(currentTime)) {
     //获得当前服务的请求量(并发量)
     int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
     //找出并发了最小的服务
     if (concurrentConnections < minimalConcurrentConnections) {
      minimalConcurrentConnections = concurrentConnections;
      chosen = server;
     }
    }
   }

   if (chosen == null) {
    return super.choose(key);
   } else {
    return chosen;
   }
  }
 }

 public void setLoadBalancer(ILoadBalancer lb) {
  super.setLoadBalancer(lb);
  if (lb instanceof AbstractLoadBalancer) {
   this.loadBalancerStats = ((AbstractLoadBalancer)lb).getLoadBalancerStats();
  }

 }
}

   小结:ClientConfigEnabledRoundRobinRule子类之一,获取到并发了最少的服务

2)ClientConfigEnabledRoundRobinRule的另一个子类是PredicateBasedRule:通过源码可以看出它是一个抽象类,它的抽象方法getPredicate()返回一个AbstractServerPredicate的实例,然后它的choose方法调用AbstractServerPredicate类的chooseRoundRobinAfterFiltering方法获取具体的Server实例并返回


public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {
 public PredicateBasedRule() {
 }
 //获取AbstractServerPredicate对象
 public abstract AbstractServerPredicate getPredicate();

 public Server choose(Object key) {
  //获取当前策略的负载均衡器
  ILoadBalancer lb = this.getLoadBalancer();
  //通过AbstractServerPredicate的子类过滤掉一部分实例(它实现了Predicate)
  //以轮询的方式从过滤后的服务里选择一个服务
  Optional<Server> server = this.getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
  return server.isPresent() ? (Server)server.get() : null;
 }
}

  再看看它的chooseRoundRobinAfterFiltering()方法是如何实现的


public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
  List<Server> eligible = this.getEligibleServers(servers, loadBalancerKey);
  return eligible.size() == 0 ? Optional.absent() : Optional.of(eligible.get(this.incrementAndGetModulo(eligible.size())));
 }

  是这样的,先通过this.getEligibleServers(servers, loadBalancerKey)方法获取一部分实例,然后判断这部分实例是否为空,如果不为空则调用eligible.get(this.incrementAndGetModulo(eligible.size())方法从这部分实例里获取一个服务,点进this.getEligibleServers看


public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) {
  if (loadBalancerKey == null) {
   return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate()));
  } else {
   List<Server> results = Lists.newArrayList();
   Iterator var4 = servers.iterator();

   while(var4.hasNext()) {
    Server server = (Server)var4.next();
    //条件满足
    if (this.apply(new PredicateKey(loadBalancerKey, server))) {
     //添加到集合里
     results.add(server);
    }
   }

   return results;
  }
 }

  getEligibleServers方法是根据this.apply(new PredicateKey(loadBalancerKey, server))进行过滤的,如果满足,就添加到返回的集合中。符合什么条件才可以进行过滤呢?可以发现,apply是用this调用的,this指的是AbstractServerPredicate(它的类对象),但是,该类是个抽象类,该实例是不存在的,需要子类去实现,它的子类在这里暂时不是看了,以后有空再深入学习下,它的子类如下,实现哪个子类,就用什么 方式过滤。

   再回到chooseRoundRobinAfterFiltering()方法,刚刚说完它通过 getEligibleServers方法过滤并获取到一部分实例,然后再通过this.incrementAndGetModulo(eligible.size())方法从这部分实例里选择一个实例返回,该方法的意思是直接返回下一个整数(索引值),通过该索引值从返回的实例列表中取得Server实例。


private int incrementAndGetModulo(int modulo) {
  //当前下标
  int current;
  //下一个下标
  int next;
  do {
   //获得当前下标值
   current = this.nextIndex.get();
   next = (current + 1) % modulo;
  } while(!this.nextIndex.compareAndSet(current, next) || current >= modulo);

  return current;
 }

  源码撸明白了,再来理一下chooseRoundRobinAfterFiltering()的思路:先通过getEligibleServers()方法获得一部分服务实例,再从这部分服务实例里拿到当前服务实例的下一个服务对象使用。

  小结:通过AbstractServerPredicate的chooseRoundRobinAfterFiltering方法进行过滤,获取备选的服务实例清单,然后用线性轮询选择一个实例,是一个抽象类,过滤策略在AbstractServerPredicate的子类中具体实现

3.RetryRule:是对选定的负载均衡策略加上重试机制,即在一个配置好的时间段内(默认500ms),当选择实例不成功,则一直尝试使用subRule的方式选择一个可用的实例,在调用时间到达阀值的时候还没找到可用服务,则返回空,如果没有配置负载策略,默认轮询(即“4”中的轮询);

  先贴上它的源码


public class RetryRule extends AbstractLoadBalancerRule {
 //从这可以看出,默认使用轮询机制
 IRule subRule = new RoundRobinRule();
 //500秒的阀值
 long maxRetryMillis = 500L;
 //无参构造函数
 public RetryRule() {
 }
 //使用轮询机制
 public RetryRule(IRule subRule) {
  this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
 }

 public RetryRule(IRule subRule, long maxRetryMillis) {
  this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
  this.maxRetryMillis = maxRetryMillis > 0L ? maxRetryMillis : 500L;
 }
 
 public void setRule(IRule subRule) {
  this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());
 }

 public IRule getRule() {
  return this.subRule;
 }
 //设置最大耗时时间(阀值),最多重试多久
 public void setMaxRetryMillis(long maxRetryMillis) {
  if (maxRetryMillis > 0L) {
   this.maxRetryMillis = maxRetryMillis;
  } else {
   this.maxRetryMillis = 500L;
  }

 }
 //获取重试的时间
 public long getMaxRetryMillis() {
  return this.maxRetryMillis;
 }
 //设置负载均衡器,用以获取服务
 public void setLoadBalancer(ILoadBalancer lb) {
  super.setLoadBalancer(lb);
  this.subRule.setLoadBalancer(lb);
 }
 //通过负载均衡器选择服务
 public Server choose(ILoadBalancer lb, Object key) {
  long requestTime = System.currentTimeMillis();
  //当前时间+阀值 = 截止时间
  long deadline = requestTime + this.maxRetryMillis;
  Server answer = null;
  answer = this.subRule.choose(key);
  //获取到服务直接返回
  if ((answer == null || !answer.isAlive()) && System.currentTimeMillis() < deadline) {
   InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis());
   //获取不到服务的情况下反复获取
   while(!Thread.interrupted()) {
    answer = this.subRule.choose(key);
    if (answer != null && answer.isAlive() || System.currentTimeMillis() >= deadline) {
     break;
    }

    Thread.yield();
   }

   task.cancel();
  }

  return answer != null && answer.isAlive() ? answer : null;
 }

 public Server choose(Object key) {
  return this.choose(this.getLoadBalancer(), key);
 }

 public void initWithNiwsConfig(IClientConfig clientConfig) {
 }
}

  小结:采用RoundRobinRule的选择机制,进行反复尝试,当花费时间超过设置的阈值maxRetryMills时,就返回null

4.RoundRobinRule:轮询策略,它会从服务清单中按照轮询的方式依次选择每个服务实例,它的工作原理是:直接获取下一个可用实例,如果超过十次没有获取到可用的服务实例,则返回空且报出异常信息;


public class RoundRobinRule extends AbstractLoadBalancerRule {
 private AtomicInteger nextServerCyclicCounter;
 private static final boolean AVAILABLE_ONLY_SERVERS = true;
 private static final boolean ALL_SERVERS = false;
 private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);

 public RoundRobinRule() {
  this.nextServerCyclicCounter = new AtomicInteger(0);
 }

 public RoundRobinRule(ILoadBalancer lb) {
  this();
  this.setLoadBalancer(lb);
 }

 public Server choose(ILoadBalancer lb, Object key) {
  if (lb == null) {
   log.warn("no load balancer");
   return null;
  } else {
   Server server = null;
   int count = 0;

   while(true) {
    //选择十次,十次都没选到可用服务就返回空
    if (server == null && count++ < 10) {
     List<Server> reachableServers = lb.getReachableServers();
     List<Server> allServers = lb.getAllServers();
     int upCount = reachableServers.size();
     int serverCount = allServers.size();
     if (upCount != 0 && serverCount != 0) {
      int nextServerIndex = this.incrementAndGetModulo(serverCount);
      server = (Server)allServers.get(nextServerIndex);
      if (server == null) {
       Thread.yield();
      } else {
       if (server.isAlive() && server.isReadyToServe()) {
        return server;
       }

       server = null;
      }
      continue;
     }

     log.warn("No up servers available from load balancer: " + lb);
     return null;
    }

    if (count >= 10) {
     
     log.warn("No available alive servers after 10 tries from load balancer: " + lb);
    }

    return server;
   }
  }
 }
 
 //递增的形式实现轮询
 private int incrementAndGetModulo(int modulo) {
  int current;
  int next;
  do {
   current = this.nextServerCyclicCounter.get();
   next = (current + 1) % modulo;
  } while(!this.nextServerCyclicCounter.compareAndSet(current, next));

  return next;
 }

 public Server choose(Object key) {
  return this.choose(this.getLoadBalancer(), key);
 }

 public void initWithNiwsConfig(IClientConfig clientConfig) {
 }
}

  小结:采用线性轮询机制循环依次选择每个服务实例,直到选择到一个不为空的服务实例或循环次数达到10次   

它有个子类WeightedResponseTimeRule,WeightedResponseTimeRule是对RoundRobinRule的优化。WeightedResponseTimeRule在其父类的基础上,增加了定时任务这个功能,通过启动一个定时任务来计算每个服务的权重,然后遍历服务列表选择服务实例,从而达到更加优秀的分配效果。我们这里把这个类分为三部分:定时任务,计算权值,选择服务

1)定时任务


//定时任务
void initialize(ILoadBalancer lb) {
  if (this.serverWeightTimer != null) {
   this.serverWeightTimer.cancel();
  }

  this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true);
  //开启一个任务,每30秒执行一次
  this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval);
  WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight();
  sw.maintainWeights();
  Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
   public void run() {
    WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name);
    WeightedResponseTimeRule.this.serverWeightTimer.cancel();
   }
  }));
 }

DynamicServerWeightTask()任务如下:


class DynamicServerWeightTask extends TimerTask {
  DynamicServerWeightTask() {
  }

  public void run() {
   WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight();

   try {
    //计算权重
    serverWeight.maintainWeights();
   } catch (Exception var3) {
    WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3);
   }

  }
 }

   小结:调用initialize方法开启定时任务,再在任务里计算服务的权重

2)计算权重:第一步,先算出所有实例的响应时间;第二步,再根据所有实例响应时间,算出每个实例的权重


//用来存储权重
private volatile List<Double> accumulatedWeights = new ArrayList();

//内部类
class ServerWeight {
  ServerWeight() {
  }
  //该方法用于计算权重
  public void maintainWeights() {
   //获取负载均衡器
   ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer();
   if (lb != null) {
    if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) {
     try {
      WeightedResponseTimeRule.logger.info("Weight adjusting job started");
      AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb;
      //获得每个服务实例的信息
      LoadBalancerStats stats = nlb.getLoadBalancerStats();
      if (stats != null) {
       //实例的响应时间
       double totalResponseTime = 0.0D;

       ServerStats ss;
       //累加所有实例的响应时间
       for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) {
        Server server = (Server)var6.next();
        ss = stats.getSingleServerStat(server);
       }

       Double weightSoFar = 0.0D;
       List<Double> finalWeights = new ArrayList();
       Iterator var20 = nlb.getAllServers().iterator();
       //计算负载均衡器所有服务的权重,公式是weightSoFar = weightSoFar + weight-实例平均响应时间
       while(var20.hasNext()) {
        Server serverx = (Server)var20.next();
        ServerStats ssx = stats.getSingleServerStat(serverx);
        double weight = totalResponseTime - ssx.getResponseTimeAvg();
        weightSoFar = weightSoFar + weight;
        finalWeights.add(weightSoFar);
       }

       WeightedResponseTimeRule.this.setWeights(finalWeights);
       return;
      }
     } catch (Exception var16) {
      WeightedResponseTimeRule.logger.error("Error calculating server weights", var16);
      return;
     } finally {
      WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false);
     }

    }
   }
  }
 }

3)选择服务


@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})
 public Server choose(ILoadBalancer lb, Object key) {
  if (lb == null) {
   return null;
  } else {
   Server server = null;

   while(server == null) {
    List<Double> currentWeights = this.accumulatedWeights;
    if (Thread.interrupted()) {
     return null;
    }

    List<Server> allList = lb.getAllServers();
    int serverCount = allList.size();
    if (serverCount == 0) {
     return null;
    }

    int serverIndex = 0;
    
    double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1);
    if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) {
     //生产0到最大权重值的随机数
     double randomWeight = this.random.nextDouble() * maxTotalWeight;
     int n = 0;
     //循环权重区间
     for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) {
      //获取到循环的数
      Double d = (Double)var13.next();
      //假如随机数在这个区间内,就拿该索引d服务列表获取对应的实例
      if (d >= randomWeight) {
       serverIndex = n;
       break;
      }
     }

     server = (Server)allList.get(serverIndex);
    } else {
     server = super.choose(this.getLoadBalancer(), key);
     if (server == null) {
      return server;
     }
    }

    if (server == null) {
     Thread.yield();
    } else {
     if (server.isAlive()) {
      return server;
     }

     server = null;
    }
   }

   return server;
  }
 }

  小结:首先生成了一个[0,最大权重值) 区间内的随机数,然后遍历权重列表,假如当前随机数在这个区间内,就通过该下标获得对应的服务。

以上就是详解SpringCloud的负载均衡的详细内容,更多关于SpringCloud 负载均衡的资料请关注编程网其它相关文章!

--结束END--

本文标题: 详解SpringCloud的负载均衡

本文链接: https://www.lsjlt.com/news/121418.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 详解SpringCloud的负载均衡
    目录一.什么是负载均衡 二.负载均衡的简单分类 三.为什么需要做负载均衡 四.springCloud如何开启负载均衡 五.IRule 1.RandomRule:表示随机策略,它将从服...
    99+
    2022-11-11
  • SpringCloud LoadBalancerClient 负载均衡原理解析
    目录深入解析 LoadBalancerClient 接口源码:1、LoadBalancerClient 源码解析:2、ILoadBalancer 源码解析:  &...
    99+
    2022-11-13
  • SpringCloud Ribbon负载均衡原理
    目录一、Ribbon负载均衡原理1 负载均衡原理2 负载均衡策略(IRule接口)3 Ribbon默认懒加载4 总结:Ribbon负载均衡规则、自定义、饥饿加载一、Ribbon负载均...
    99+
    2022-11-13
  • 深入理解Java SpringCloud Ribbon 负载均衡
    目录前言1、抛出问题2、源码解析2.1、LoadBalancerIntercepor2.2、LoadBalancerClient2.3、负载均衡策略IRule2.4、总结3、负载均衡...
    99+
    2022-11-12
  • springcloud负载均衡怎么配置
    Spring Cloud提供了多种负载均衡的方式,可以通过在配置文件中配置相关参数来进行配置。 使用Ribbon负载均衡器: 在...
    99+
    2023-10-26
    springcloud
  • springcloud负载均衡怎么搭建
    要搭建Spring Cloud负载均衡,你可以使用Ribbon作为负载均衡器。下面是搭建Spring Cloud负载均衡的步骤:1....
    99+
    2023-09-01
    springcloud 负载均衡
  • springcloud怎么实现负载均衡
    Spring Cloud中实现负载均衡,可以使用Ribbon和Feign两种方式。1. Ribbon负载均衡:Ribbon是一个客户...
    99+
    2023-08-26
    springcloud
  • SpringCloud客户端负载均衡——Ribbon
      Ribbon——A ribbon is a long, narrow piece of cloth that you use for tying things together or as a decoration.  Ribbon是一...
    99+
    2023-06-02
  • springcloud负载均衡怎么实现
    Spring Cloud提供了多种方式来实现负载均衡,常用的有以下几种方式:1. Ribbon:Ribbon是Spring Clou...
    99+
    2023-09-02
    springcloud 负载均衡
  • SpringCloud超详细讲解负载均衡组件Ribbon源码
    目录前言项目实战创建项目启动项目验证源码分析选择服务地址替换总结前言 上一篇文章中我们通过自己开发了一个负载均衡组件,实现了随机算法的负载均衡功能,如果要实现其他算法,还需要修改代码...
    99+
    2022-11-13
  • springcloud负载均衡策略有哪些
    springcloud负载均衡策略有:1、Ribbon,它是一个基于Netflix Ribbon实现的一套客户端负载均衡工具;2、Fegin的配置,它是一个声明式的Web服务客户端,能够更加容易编写Web服务客户端,只要在api层建设一个接...
    99+
    2022-10-23
  • SpringCloud怎么实现Ribbon负载均衡
    这篇文章主要讲解了“SpringCloud怎么实现Ribbon负载均衡”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“SpringCloud怎么实现Ribbon负载均衡”吧!Ribbon使用R...
    99+
    2023-06-30
  • springcloud负载均衡的作用是什么
    Spring Cloud负载均衡的作用是帮助应用程序在多个服务提供者之间分配负载,以提高系统的可扩展性和可靠性。具体来说,Sprin...
    99+
    2023-09-01
    springcloud 负载均衡
  • Java Spring Cloud 负载均衡详解
    目录1. Ribbon 客户端负载均衡1.1 Ribbon 概述1.2 Ribbon 远程调用1.3 Ribbon 负载均衡1.4 Ribbon 负载均衡策略总结1. Ribbon ...
    99+
    2022-11-12
  • JavaRibbon负载均衡详细讲解
    目录介绍LB分类Ribbon默认自带的负载规则Ribbon负载规则替换Ribbon默认负载轮询算法原理介绍 Spring Cloud Ribbon是基于Netflix Ribbon实...
    99+
    2023-01-30
    Java Ribbon负载均衡 Java Ribbon Java负载均衡
  • Nginx负载均衡策略详解
    本篇内容介绍了“Nginx负载均衡策略详解”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!本文只是展示了部分nginx实现负载均衡时可以使用的...
    99+
    2023-06-03
  • springcloud负载均衡策略怎么实现
    在Spring Cloud中,负载均衡策略的实现主要依赖于Ribbon和Eureka。Ribbon是Netflix开源的负载均衡组件...
    99+
    2023-09-27
    springcloud
  • 什么是SpringCloud客户端负载均衡
    本篇内容介绍了“什么是SpringCloud客户端负载均衡”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!S...
    99+
    2022-10-19
  • SpringCloud Ribbon中的7种负载均衡策略
    SpringCloud Ribbon中的7种负载均衡策略 Ribbon 介绍负载均衡设置7种负载均衡策略1.轮询策略2.权重策略3.随机策略4.最小连接数策略5.重试策略6.可用性敏感策略7....
    99+
    2023-09-07
    spring cloud ribbon 负载均衡
  • 详解.NET中负载均衡的使用
    目录一、简介二、应用场景三、实际案例四、算法实现4.1 随机4.2 轮询4.3 权重一、简介 负载均衡(Load Balance),简称 LB,就是将并发的用户请求通过规则后平衡、分...
    99+
    2022-11-13
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作