广告
返回顶部
首页 > 资讯 > 前端开发 > node.js >浅谈Node.js之异步流控制
  • 656
分享到

浅谈Node.js之异步流控制

浅谈Nodejs 2022-06-04 17:06:00 656人浏览 独家记忆
摘要

前言 在没有深度使用函数回调的经验的时候,去看这些内容还是有一点吃力的。由于node.js独特的异步特性,才出现了“回调地狱”的问题,这篇文章中,我比较详细的记录了如何解决异步流问题。 文章会很长,而且这篇

前言

在没有深度使用函数回调的经验的时候,去看这些内容还是有一点吃力的。由于node.js独特的异步特性,才出现了“回调地狱”的问题,这篇文章中,我比较详细的记录了如何解决异步流问题。

文章会很长,而且这篇是对异步流模式的解释。文中会使用一个简单的网络蜘蛛的例子,它的作用是抓取指定URL的网页内容并保存在项目中,在文章的最后,可以找到整篇文章中的源码demo。

1.原生JavaScript模式

本篇不针对初学者,因此会省略掉大部分的基础内容的讲解:

(spider_v1.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");

function spider(url, callback) {
  const filename = utilities.urlToFilename(url);
  console.log(`filename: ${filename}`);

  fs.exists(filename, exists => {
    if (!exists) {
      console.log(`Downloading ${url}`);

      request(url, (err, response, body) => {
        if (err) {
          callback(err);
        } else {
          mkdirp(path.dirname(filename), err => {
            if (err) {
              callback(err);
            } else {
              fs.writeFile(filename, body, err => {
                if (err) {
                  callback(err);
                } else {
                  callback(null, filename, true);
                }
              });
            }
          });
        }
      });
    } else {
      callback(null, filename, false);
    }
  });
}

spider(process.argv[2], (err, filename, downloaded) => {
  if (err) {
    console.log(err);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

上边的代码的流程大概是这样的:

把url转换成filename 判断该文件名是否存在,若存在直接返回,否则进入下一步 发请求,获取body 把body写入到文件中

这是一个非常简单版本的蜘蛛,他只能抓取一个url的内容,看到上边的回调多么令人头疼。那么我们开始进行优化

首先,if else 这种方式可以进行优化,这个很简单,不用多说,放一个对比效果:


/// before
if (err) {
  callback(err);
} else {
  callback(null, filename, true);
}

/// after
if (err) {
  return callback(err);
}
callback(null, filename, true);

代码这么写,嵌套就会少一层,但经验丰富的程序员会认为,这样写过重强调了error,我们编程的重点应该放在处理正确的数据上,在可读性上也存在这样的要求。

另一个优化是函数拆分,上边代码中的spider函数中,可以把下载文件和保存文件拆分出去。

(spider_v2.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");

function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), err => {
    if (err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

function download(url, filename, callback) {
  console.log(`Downloading ${url}`);

  request(url, (err, response, body) => {
    if (err) {
      return callback(err);
    }
    saveFile(filename, body, err => {
      if (err) {
        return callback(err);
      }
      console.log(`Downloaded and saved: ${url}`);
      callback(null, body);
    });
  })
}

function spider(url, callback) {
  const filename = utilities.urlToFilename(url);
  console.log(`filename: ${filename}`);

  fs.exists(filename, exists => {
    if (exists) {
      return callback(null, filename, false);
    }
    download(url, filename, err => {
      if (err) {
        return callback(err);
      }
      callback(null, filename, true);
    })
  });
}

spider(process.argv[2], (err, filename, downloaded) => {
  if (err) {
    console.log(err);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

上边的代码基本上是采用原生优化后的结果,但这个蜘蛛的功能太过简单,我们现在需要抓取某个网页中的所有url,这样才会引申出串行和并行的问题。

(spider_v3.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");

function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), err => {
    if (err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

function download(url, filename, callback) {
  console.log(`Downloading ${url}`);

  request(url, (err, response, body) => {
    if (err) {
      return callback(err);
    }
    saveFile(filename, body, err => {
      if (err) {
        return callback(err);
      }
      console.log(`Downloaded and saved: ${url}`);
      callback(null, body);
    });
  })
}

/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);

  function iterate(index) {
    if (index === links.length) {
      return callback();
    }
    spider(links[index], nesting - 1, err => {
      if (err) {
        return callback(err);
      }
      iterate((index + 1));
    })
  }

  iterate(0);
}

function spider(url, nesting, callback) {
  const filename = utilities.urlToFilename(url);

  fs.readFile(filename, "utf8", (err, body) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return callback(err);
      }
      return download(url, filename, (err, body) => {
        if (err) {
          return callback(err);
        }
        spiderLinks(url, body, nesting, callback);
      });
    }

    spiderLinks(url, body, nesting, callback);
  });
}

spider(process.argv[2], 2, (err, filename, downloaded) => {
  if (err) {
    console.log(err);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

上边的代码相比之前的代码多了两个核心功能,首先是通过辅助类获取到了某个body中的links:


const links = utilities.getPageLinks(currentUrl, body);

内部实现就不解释了,另一个核心代码就是:


/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);

  function iterate(index) {
    if (index === links.length) {
      return callback();
    }
    spider(links[index], nesting - 1, err => {
      if (err) {
        return callback(err);
      }
      iterate((index + 1));
    })
  }

  iterate(0);
}

可以说上边这一小段代码,就是采用原生实现异步串行的pattern了。除了这些之外,还引入了nesting的概念,通过这是这个属性,可以控制抓取层次。

到这里我们就完整的实现了串行的功能,考虑到性能,我们要开发并行抓取的功能。

(spider_v4.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");

function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), err => {
    if (err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

function download(url, filename, callback) {
  console.log(`Downloading ${url}`);

  request(url, (err, response, body) => {
    if (err) {
      return callback(err);
    }
    saveFile(filename, body, err => {
      if (err) {
        return callback(err);
      }
      console.log(`Downloaded and saved: ${url}`);
      callback(null, body);
    });
  })
}

/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);
  if (links.length === 0) {
    return process.nextTick(callback);
  }

  let completed = 0, hasErrors = false;

  function done(err) {
    if (err) {
      hasErrors = true;
      return callback(err);
    }

    if (++completed === links.length && !hasErrors) {
      return callback();
    }
  }

  links.forEach(link => {
    spider(link, nesting - 1, done);
  });
}

const spidering = new Map();

function spider(url, nesting, callback) {
  if (spidering.has(url)) {
    return process.nextTick(callback);
  }

  spidering.set(url, true);

  const filename = utilities.urlToFilename(url);

  /// In this pattern, there will be some issues.
  /// Possible problems to download the same url again and again。
  fs.readFile(filename, "utf8", (err, body) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return callback(err);
      }
      return download(url, filename, (err, body) => {
        if (err) {
          return callback(err);
        }
        spiderLinks(url, body, nesting, callback);
      });
    }

    spiderLinks(url, body, nesting, callback);
  });
}

spider(process.argv[2], 2, (err, filename, downloaded) => {
  if (err) {
    console.log(err);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

这段代码同样很简单,也有两个核心内容。一个是如何实现并发


/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);
  if (links.length === 0) {
    return process.nextTick(callback);
  }

  let completed = 0, hasErrors = false;

  function done(err) {
    if (err) {
      hasErrors = true;
      return callback(err);
    }

    if (++completed === links.length && !hasErrors) {
      return callback();
    }
  }

  links.forEach(link => {
    spider(link, nesting - 1, done);
  });
}

上边的代码可以说是实现并发的一个pattern。利用循环遍历来实现。另一个核心是,既然是并发的,那么利用 fs.exists 就会存在问题,可能会重复下载同一文件,这里的解决方案是:

使用Map缓存某一url,url应该作为key

现在我们又有了新的需求,要求限制同时并发的最大数,那么在这里就引进了一个我认为最重要的概念:队列。

(task-Queue.js)


class TaskQueue {
  constructor(concurrency) {
    this.concurrency = concurrency;
    this.running = 0;
    this.queue = [];
  }

  pushTask(task) {
    this.queue.push(task);
    this.next();
  }

  next() {
    while (this.running < this.concurrency && this.queue.length) {
      const task = this.queue.shift();
      task(() => {
        this.running--;
        this.next();
      });
      this.running++;
    }
  }
}

module.exports = TaskQueue;

上边的代码就是队列的实现代码,核心是 next() 方法,可以看出,当task加入队列中后,会立刻执行,这不是说这个任务一定马上执行,而是指的是next会立刻调用。

(spider_v5.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");
const TaskQueue = require("./task-Queue");
const downloadQueue = new TaskQueue(2);

function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), err => {
    if (err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

function download(url, filename, callback) {
  console.log(`Downloading ${url}`);

  request(url, (err, response, body) => {
    if (err) {
      return callback(err);
    }
    saveFile(filename, body, err => {
      if (err) {
        return callback(err);
      }
      console.log(`Downloaded and saved: ${url}`);
      callback(null, body);
    });
  })
}

/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);
  if (links.length === 0) {
    return process.nextTick(callback);
  }

  let completed = 0, hasErrors = false;

  links.forEach(link => {
    /// 给队列出传递一个任务,这个任务首先是一个函数,其次该函数接受一个参数
    /// 当调用任务时,触发该函数,然后给函数传递一个参数,告诉该函数在任务结束时干什么
    downloadQueue.pushTask(done => {
      spider(link, nesting - 1, err => {
        /// 这里表示,只要发生错误,队列就会退出
        if (err) {
          hasErrors = true;
          return callback(err);
        }
        if (++completed === links.length && !hasErrors) {
          callback();
        }

        done();
      });
    });

  });
}

const spidering = new Map();

function spider(url, nesting, callback) {
  if (spidering.has(url)) {
    return process.nextTick(callback);
  }

  spidering.set(url, true);

  const filename = utilities.urlToFilename(url);

  /// In this pattern, there will be some issues.
  /// Possible problems to download the same url again and again。
  fs.readFile(filename, "utf8", (err, body) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return callback(err);
      }
      return download(url, filename, (err, body) => {
        if (err) {
          return callback(err);
        }
        spiderLinks(url, body, nesting, callback);
      });
    }

    spiderLinks(url, body, nesting, callback);
  });
}

spider(process.argv[2], 2, (err, filename, downloaded) => {
  if (err) {
    console.log(`error: ${err}`);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

因此,为了限制并发的个数,只需在 spiderLinks 方法中,把task遍历放入队列就可以了。这相对来说很简单。

到这里为止,我们使用原生javascript实现了一个有相对完整功能的网络蜘蛛,既能串行,也能并发,还可以控制并发个数。

2.使用async库

把不同的功能放到不同的函数中,会给我们带来巨大的好处,async库十分流行,它的性能也不错,它内部基于callback。

(spider_v6.js)


const request = require("request");
const fs = require("fs");
const mkdirp = require("mkdirp");
const path = require("path");
const utilities = require("./utilities");
const series = require("async/series");
const eachSeries = require("async/eachSeries");

function download(url, filename, callback) {
  console.log(`Downloading ${url}`);

  let body;

  series([
    callback => {
      request(url, (err, response, resBody) => {
        if (err) {
          return callback(err);
        }
        body = resBody;
        callback();
      });
    },
    mkdirp.bind(null, path.dirname(filename)),
    callback => {
      fs.writeFile(filename, body, callback);
    }
  ], err => {
    if (err) {
      return callback(err);
    }
    console.log(`Downloaded and saved: ${url}`);
    callback(null, body);
  });
}

/// 最大的启发是实现了如何异步循环遍历数组
function spiderLinks(currentUrl, body, nesting, callback) {
  if (nesting === 0) {
    return process.nextTick(callback);
  }

  const links = utilities.getPageLinks(currentUrl, body);
  if (links.length === 0) {
    return process.nextTick(callback);
  }

  eachSeries(links, (link, cb) => {
    "use strict";
    spider(link, nesting - 1, cb);
  }, callback);
}

const spidering = new Map();

function spider(url, nesting, callback) {
  if (spidering.has(url)) {
    return process.nextTick(callback);
  }

  spidering.set(url, true);

  const filename = utilities.urlToFilename(url);

  fs.readFile(filename, "utf8", (err, body) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return callback(err);
      }
      return download(url, filename, (err, body) => {
        if (err) {
          return callback(err);
        }
        spiderLinks(url, body, nesting, callback);
      });
    }

    spiderLinks(url, body, nesting, callback);
  });
}

spider(process.argv[2], 1, (err, filename, downloaded) => {
  if (err) {
    console.log(err);
  } else if (downloaded) {
    console.log(`Completed the download of ${filename}`);
  } else {
    console.log(`${filename} was already downloaded`);
  }
});

在上边的代码中,我们只使用了async的三个功能:


const series = require("async/series"); // 串行
const eachSeries = require("async/eachSeries"); // 并行
const queue = require("async/queue"); // 队列

由于比较简单,就不做解释了。async中的队列的代码在(spider_v7.js)中,和上边我们自定义的队列很相似,也不做更多解释了。

3.Promise

Promise是一个协议,有很多库实现了这个协议,我们用的是es6的实现。简单来说promise就是一个约定,如果完成了,就调用它的resolve方法,失败了就调用它的reject方法。它内有实现了then方法,then返回promise本身,这样就形成了调用链。

其实Promise的内容有很多,在实际应用中是如何把普通的函数promise化。这方面的内容在这里也不讲了,我自己也不够格

(spider_v8.js)


const utilities = require("./utilities");
const request = utilities.promisify(require("request"));
const fs = require("fs");
const readFile = utilities.promisify(fs.readFile);
const writeFile = utilities.promisify(fs.writeFile);
const mkdirp = utilities.promisify(require("mkdirp"));
const path = require("path");


function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), err => {
    if (err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

function download(url, filename) {
  console.log(`Downloading ${url}`);

  let body;

  return request(url)
    .then(response => {
      "use strict";
      body = response.body;
      return mkdirp(path.dirname(filename));
    })
    .then(() => writeFile(filename, body))
    .then(() => {
      "use strict";
      console.log(`Downloaded adn saved: ${url}`);
      return body;
    });
}

/// promise编程的本质就是为了解决在函数中设置回调函数的问题
/// 通过中间层promise来实现异步函数同步化
function spiderLinks(currentUrl, body, nesting) {
  let promise = Promise.resolve();
  if (nesting === 0) {
    return promise;
  }

  const links = utilities.getPageLinks(currentUrl, body);

  links.forEach(link => {
    "use strict";
    promise = promise.then(() => spider(link, nesting - 1));
  });

  return promise;
}

function spider(url, nesting) {
  const filename = utilities.urlToFilename(url);

  return readFile(filename, "utf8")
    .then(
      body => spiderLinks(url, body, nesting),
      err => {
        "use strict";
        if (err.code !== 'ENOENT') {
          /// 抛出错误,这个方便与在整个异步链的最后通过呢catch来捕获这个链中的错误
          throw err;
        }
        return download(url, filename)
          .then(body => spiderLinks(url, body, nesting));
      }
    );
}

spider(process.argv[2], 1)
  .then(() => {
    "use strict";
    console.log('Download complete');
  })
  .catch(err => {
    "use strict";
    console.log(err);
  });

可以看到上边的代码中的函数都是没有callback的,只需要在最后catch就可以了。

在设计api的时候,应该支持两种方式,及支持callback,又支持promise


function asyncDivision(dividend, divisor, cb) {
  return new Promise((resolve, reject) => {
    "use strict";
    process.nextTick(() => {
      const result = dividend / divisor;
      if (isNaN(result) || !Number.isFinite(result)) {
        const error = new Error("Invalid operands");
        if (cb) {
          cb(error);
        }
        return reject(error);
      }

      if (cb) {
        cb(null, result);
      }
      resolve(result);
    });
  });
}

asyncDivision(10, 2, (err, result) => {
  "use strict";
  if (err) {
    return console.log(err);
  }
  console.log(result);
});

asyncDivision(22, 11)
  .then((result) => console.log(result))
  .catch((err) => console.log(err));

4.Generator

Generator很有意思,他可以让暂停函数和恢复函数,利用thunkify和co这两个库,我们下边的代码实现起来非常酷。

(spider_v9.js)


const thunkify = require("thunkify");
const co = require("co");
const path = require("path");
const utilities = require("./utilities");

const request = thunkify(require("request"));
const fs = require("fs");
const mkdirp = thunkify(require("mkdirp"));
const readFile = thunkify(fs.readFile);
const writeFile = thunkify(fs.writeFile);
const nextTick = thunkify(process.nextTick);

function* download(url, filename) {
  console.log(`Downloading ${url}`);

  const response = yield request(url);
  console.log(response);

  const body = response[1];
  yield mkdirp(path.dirname(filename));

  yield writeFile(filename, body);

  console.log(`Downloaded and saved ${url}`);
  return body;
}

function* spider(url, nesting) {
  const filename = utilities.urlToFilename(url);

  let body;

  try {
    body = yield readFile(filename, "utf8");
  } catch (err) {
    if (err.code !== 'ENOENT') {
      throw err;
    }
    body = yield download(url, filename);
  }

  yield spiderLinks(url, body, nesting);
}

function* spiderLinks(currentUrl, body, nesting) {
  if (nesting === 0) {
    return nextTick();
  }

  const links = utilities.getPageLinks(currentUrl, body);

  for (let i = 0; i < links.length; i++) {
    yield spider(links[i], nesting - 1);
  }
}

/// 通过co就自动处理了回调函数,直接返回了回调函数中的参数,把这些参数放到一个数组中,但是去掉了err信息
co(function* () {
  try {
    yield spider(process.argv[2], 1);
    console.log('Download complete');
  } catch (err) {
    console.log(err);
  }
});

总结

我并没有写promise和generator并发的代码。以上这些内容来自于这本书nodejs-design-patterns 。

demo下载

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

--结束END--

本文标题: 浅谈Node.js之异步流控制

本文链接: https://www.lsjlt.com/news/12308.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 浅谈Node.js之异步流控制
    前言 在没有深度使用函数回调的经验的时候,去看这些内容还是有一点吃力的。由于Node.js独特的异步特性,才出现了“回调地狱”的问题,这篇文章中,我比较详细的记录了如何解决异步流问题。 文章会很长,而且这篇...
    99+
    2022-06-04
    浅谈 Node js
  • 浅谈Shell 流程控制
    和java、php等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法): <?php if (isset($_GET["q"])) { search(q); } else { /...
    99+
    2022-06-04
    shell 流程控制
  • 浅谈Redis的异步机制
    目录前言一、Redis 的阻塞点4 类交互对象和具体的操作之间的关系:切片集群实例交互时的阻塞点二、可以异步执行的阻塞点三、异步的子线程机制总结前言 命令操作、系统配置、关键机制、硬...
    99+
    2022-11-13
  • 浅谈node.js中async异步编程
    1.什么是异步编程? 异步编程是指由于异步I/O等因素,无法同步获得执行结果时, 在回调函数中进行下一步操作的代码编写风格,常见的如setTimeout函数、ajax请求等等。 示例: for (v...
    99+
    2022-06-04
    浅谈 node async
  • 浅谈spring boot 1.5.4 异常控制
    spring boot 已经做了统一的异常处理,下面看看如何自定义处理异常1.错误码页面映射1.1静态页面必须配置在 resources/static/error文件夹下,以错误码命名下面是404错误页面内容,当访问一个不存在的链接的时候,...
    99+
    2023-05-31
    spring boot 异常处理
  • 浅谈Node异步编程的机制
    本文介绍了Node异步编程,分享给大家,具体如下: 目前的异步编程主要解决方案有: 事件发布/订阅模式 Promise/Deferred模式 流程控制库 事件发布/订阅模式 Node自身提供...
    99+
    2022-06-04
    浅谈 机制 Node
  • Node.js中怎么实现异步流控制
    Node.js中怎么实现异步流控制,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1.原生JavaScript模式本篇不针对初学...
    99+
    2022-10-19
  • 浅谈shell脚本中的控制流结构
    习惯了c/c++的编程环境,再转到shell编程上,总有那么一点陌生的感觉。 shell中一般的if-then-else函数格式无外乎如下: if 条件1 then 命令1 elif 条件2 then命令2 ...
    99+
    2022-06-04
    shell脚本控制流结构 浅谈shell脚本中的控制流结构
  • 浅谈MySQL8.0 异步复制的三种方式
    本实验中分别针对空库、脱机、联机三种方式,配置一主两从的mysql标准异步复制。只做整服务器级别的复制,不考虑对个别库表或使用过滤复制的情况。 实验环境 [root@slave2 ~]# cat /etc/ho...
    99+
    2022-05-26
    MySQL8.0 异步复制 MySQL 异步复制
  • 浅谈JS三座大山之异步和单线程
    目录单线程异步单线程 但是我们在开发中,遇到请求网络,或者定时任务的时候,如果等待网络请求结束或者定时任务结束的时候再去做其他事情,这样页面就会卡住,所以js有异步机制解决这个问题。...
    99+
    2022-11-12
  • 从零学习node.js之详解异步控制工具async(八)
    前言 大家在编写异步程序时,最头痛的就是不知道结果什么时候返回给我们,然后执行后面的操作,很多时候只能把后面的操作放到返回成功的函数里,或者使用计数器等方法。 比较典型的两个就是:后面的操作需要依赖上一个...
    99+
    2022-06-04
    详解 工具 node
  • node.js中如何使用async异步控制工具
    node.js中如何使用async异步控制工具,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。这两个操作中,第一个异步的程序我们可能会写成这...
    99+
    2022-10-19
  • Nodejs爬虫进阶教程之异步并发控制
    之前写了个现在看来很不完美的小爬虫,很多地方没有处理好,比如说在知乎点开一个问题的时候,它的所有回答并不是全部加载好了的,当你拉到回答的尾部时,点击加载更多,回答才会再加载一部分,所以说如果直接发送一个问题...
    99+
    2022-06-04
    进阶 爬虫 教程
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作