广告
返回顶部
首页 > 资讯 > 前端开发 > node.js >深入理解Node中的buffer模块
  • 945
分享到

深入理解Node中的buffer模块

模块Nodebuffer 2022-06-04 17:06:52 945人浏览 安东尼
摘要

在node、ES2015出现之前,前端工程师只需要进行一些简单的字符串或DOM操作就可以满足业务需要,所以对二进制数据是比较陌生。node出现以后,前端面对的技术场景发生了变化,可以深入到网络传输、文件操作

node、ES2015出现之前,前端工程师只需要进行一些简单的字符串或DOM操作就可以满足业务需要,所以对二进制数据是比较陌生。node出现以后,前端面对的技术场景发生了变化,可以深入到网络传输、文件操作、图片处理等领域,而这些操作都与二进制数据紧密相关。

Node里面的buffer,是一个二进制数据容器数据结构类似与数组,数组里面的方法在buffer都存在(slice操作的结果不一样)。下面就从源码(v6.0版本)层面分析,揭开buffer操作的面纱。

1. buffer的基本使用

在Node 6.0以前,直接使用new Buffer,但是这种方式存在两个问题:

参数复杂: 内存分配,还是内存分配+内容写入,需要根据参数来确定 安全隐患: 分配到的内存可能还存储着旧数据,这样就存在安全隐患

// 本来只想申请一块内存,但是里面却存在旧数据
const buf1 = new Buffer(10) // <Buffer 90 09 70 6b bf 7f 00 00 50 3a>
// 不小心,旧数据就被读取出来了
buf1.toString() // '�tpk�u0000u0000P:'

为了解决上述问题,Buffer提供了Buffer.from、Buffer.alloc、Buffer.allocUnsafe、Buffer.allocUnsafeSlow四个方法来申请内存。


// 申请10个字节的内存
const buf2 = Buffer.alloc(10) // <Buffer 00 00 00 00 00 00 00 00 00 00>
// 默认情况下,用0进行填充
buf2.toString() //'u0000u0000u0000u0000u0000u0000u0000u0000u0000u0000'

// 上述操作就相当于
const buf1 = new Buffer(10);
buf.fill(0);
buf.toString(); // 'u0000u0000u0000u0000u0000u0000u0000u0000u0000u0000'

2. buffer的结构

buffer是一个典型的javascriptc++结合的模块,其性能部分用c++实现,非性能部分用javascript来实现。

查看图片

下面看看buffer模块的内部结构:


exports.Buffer = Buffer;
exports.SlowBuffer = SlowBuffer;
exports.INSPECT_MAX_BYTES = 50;
exports.kMaxLength = binding.kMaxLength;

buffer模块提供了4个接口:

Buffer: 二进制数据容器类,node启动时默认加载 SlowBuffer: 同样也是二进制数据容器类,不过直接进行内存申请 INSPECT_MAX_BYTES: 限制bufObject.inspect()输出的长度 kMaxLength: 一次性内存分配的上限,大小为(2^31 - 1)

其中,由于Buffer经常使用,所以node在启动的时候,就已经加载了Buffer,而其他三个,仍然需要使用require('buffer').***。

关于buffer的内存申请、填充、修改等涉及性能问题的操作,均通过c++里面的node_buffer.cc来实现:


// c++里面的node_buffer
namespace node {
 bool zero_fill_all_buffers = false;
 namespace Buffer {
  ...
 }
}
NODE_MODULE_CONTEXT_AWARE_BUILTIN(buffer, node::Buffer::Initialize) 

3. 内存分配的策略

Node中Buffer内存分配太过常见,从系统性能考虑出发,Buffer采用了如下的管理策略。

查看图片

3.1 Buffer.from

Buffer.from(value, ...)用于申请内存,并将内容写入刚刚申请的内存中,value值是多样的,Buffer是如何处理的呢?让我们一起看看源码:


Buffer.from = function(value, encodingOrOffset, length) {
 if (typeof value === 'number')
  throw new TypeError('"value" argument must not be a number');

 if (value instanceof ArrayBuffer)
  return fromArrayBuffer(value, encodinGorOffset, length);

 if (typeof value === 'string')
  return fromString(value, encodingOrOffset);

 return fromObject(value);
};

value可以分成三类:

ArrayBuffer的实例: ArrayBuffer是ES2015里面引入的,用于在浏览器端直接操作二进制数据,这样Node就与ES2015关联起来,同时,新创建的Buffer与ArrayBuffer内存是共享的 string: 该方法实现了将字符串转变为Buffer Buffer/TypeArray/Array: 会进行值的copy

3.1.1 ArrayBuffer的实例

Node v6与时俱进,将浏览器、node中对二进制数据的操作关联起来,同时二者会进行内存的共享。


var b = new ArrayBuffer(4);
var v1 = new Uint8Array(b);
var buf = Buffer.from(b)
console.log('first, typeArray: ', v1) // first, typeArray: Uint8Array [ 0, 0, 0, 0 ]
console.log('first, Buffer: ', buf) // first, Buffer: <Buffer 00 00 00 00>
v1[0] = 12
console.log('second, typeArray: ', v1) // second, typeArray: Uint8Array [ 12, 0, 0, 0 ]
console.log('second, Buffer: ', buf) // second, Buffer: <Buffer 0c 00 00 00>

在上述操作中,对ArrayBuffer的操作,引起Buffer值的修改,说明二者在内存上是同享的,再从源码层面了解下这个过程:


// buffer.js Buffer.from(arrayBuffer, ...)进入的分支:
function fromArrayBuffer(obj, byteOffset, length) {
 byteOffset >>>= 0;

 if (typeof length === 'undefined')
  return binding.createFromArrayBuffer(obj, byteOffset);

 length >>>= 0;
 return binding.createFromArrayBuffer(obj, byteOffset, length);
}
// c++ 模块中的node_buffer:
void CreateFromArrayBuffer(const FunctionCallbackInfo<Value>& args) {
 ...
 Local<ArrayBuffer> ab = args[0].As<ArrayBuffer>();
 ...
 Local<Uint8Array> ui = Uint8Array::New(ab, offset, max_length);
 ...
 args.GetReturnValue().Set(ui);
}

3.1.2 string

可以实现字符串与Buffer之间的转换,同时考虑到操作的性能,采用了一些优化策略避免频繁进行内存分配:


function fromString(string, encoding) {
 ...
 var length = byteLength(string, encoding);
 if (length === 0)
  return Buffer.alloc(0);
 // 当字符所需要的字节数大于4KB时: 直接进行内存分配
 if (length >= (Buffer.poolSize >>> 1))
  return binding.createFromString(string, encoding);
 // 当字符所需字节数小于4KB: 借助allocPool先申请、后分配的策略
 if (length > (poolSize - poolOffset))
  createPool();
 var actual = allocPool.write(string, poolOffset, encoding);
 var b = allocPool.slice(poolOffset, poolOffset + actual);
 poolOffset += actual;
 alignPool();
 return b;
}

a. 直接内存分配

当字符串所需要的字节大于4KB时,如何还从8KB的buffer pool中进行申请,那么就可能存在内存浪费,例如:

poolSize - poolOffset < 4KB: 这样就要重新申请一个8KB的pool,刚才那个pool剩余空间就会被浪费掉

看看c++是如何进行内存分配的:


// c++
void CreateFromString(const FunctionCallbackInfo<Value>& args) {
 ...
 Local<Object> buf;
 if (New(args.GetIsolate(), args[0].As<String>(), enc).ToLocal(&buf))
  args.GetReturnValue().Set(buf);
}

b. 借助于pool管理

用一个pool来管理频繁的行为,在计算机中是非常常见的行为,例如Http模块中,关于tcp连接的建立,就设置了一个tcp pool。


function fromString(string, encoding) {
 ...
 // 当字符所需字节数小于4KB: 借助allocPool先申请、后分配的策略
 // pool的空间不够用,重新分配8kb的内存
 if (length > (poolSize - poolOffset))
  createPool();
 // 在buffer pool中进行分配
 var actual = allocPool.write(string, poolOffset, encoding);
 // 得到一个内存的视图view, 特殊说明: slice不进行copy,仅仅创建view
 var b = allocPool.slice(poolOffset, poolOffset + actual);
 poolOffset += actual;
 // 校验poolOffset是8的整数倍
 alignPool();
 return b;
}

// pool的申请
function createPool() {
 poolSize = Buffer.poolSize;
 allocPool = createBuffer(poolSize, true);
 poolOffset = 0;
}
// node加载的时候,就会创建第一个buffer pool
createPool();
// 校验poolOffset是8的整数倍
function alignPool() {
 // Ensure aligned slices
 if (poolOffset & 0x7) {
  poolOffset |= 0x7;
  poolOffset++;
 }
}

3.1.3 Buffer/TypeArray/Array

可用从一个现有的Buffer、TypeArray或Array中创建Buffer,内存不会共享,仅仅进行值的copy。


var buf1 = new Buffer([1,2,3,4,5]);
var buf2 = new Buffer(buf1);
console.log(buf1); // <Buffer 01 02 03 04 05>
console.log(buf2); // <Buffer 01 02 03 04 05>
buf1[0] = 16
console.log(buf1); // <Buffer 10 02 03 04 05>
console.log(buf2); // <Buffer 01 02 03 04 05>

上述示例就证明了buf1、buf2没有进行内存的共享,仅仅是值的copy,再从源码层面进行分析:


function fromObject(obj) {
 // 当obj为Buffer时
 if (obj instanceof Buffer) {
  ...
  const b = allocate(obj.length);
  obj.copy(b, 0, 0, obj.length);
  return b;
 }
 // 当obj为TypeArray或Array时
 if (obj) {
  if (obj.buffer instanceof ArrayBuffer || 'length' in obj) {
   ...
   return fromArrayLike(obj);
  }
  if (obj.type === 'Buffer' && Array.isArray(obj.data)) {
   return fromArrayLike(obj.data);
  }
 }

 throw new TypeError(kFromErrORMsg);
}
// 数组或类数组,逐个进行值的copy
function fromArrayLike(obj) {
 const length = obj.length;
 const b = allocate(length);
 for (var i = 0; i < length; i++)
  b[i] = obj[i] & 255;
 return b;
}

3.2 Buffer.alloc

Buffer.alloc用于内存的分配,同时会对内存的旧数据进行覆盖,避免安全隐患的产生。


Buffer.alloc = function(size, fill, encoding) {
 ...
 if (size <= 0)
  return createBuffer(size);
 if (fill !== undefined) {
  ...
  return typeof encoding === 'string' ?
    createBuffer(size, true).fill(fill, encoding) :
    createBuffer(size, true).fill(fill);
 }
 return createBuffer(size);
};
function createBuffer(size, noZeroFill) {
 flags[kNoZeroFill] = noZeroFill ? 1 : 0;
 try {
  const ui8 = new Uint8Array(size);
  Object.setPrototypeOf(ui8, Buffer.prototype);
  return ui8;
 } finally {
  flags[kNoZeroFill] = 0;
 }
}

上述代码有几个需要注意的点:

3.2.1 先申请后填充

alloc先通过createBuffer申请一块内存,然后再进行填充,保证申请的内存全部用fill进行填充。


var buf = Buffer.alloc(10, 11);
console.log(buf); // <Buffer 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b>

3.2.2 flags标示

flags用于标识默认的填充值是否为0,该值在javascript中设置,在c++中进行读取。


// js
const binding = process.binding('buffer');
const bindingObj = {};
...
binding.setupBufferJS(Buffer.prototype, bindingObj);
...
const flags = bindingObj.flags;
const kNoZeroFill = 0;

// c++
void SetupBufferJS(const FunctionCallbackInfo<Value>& args) {
 ...
 Local<Object> bObj = args[1].As<Object>();
 ...
 bObj->Set(String::NewFromUtf8(env->isolate(), "flags"),
  Uint32Array::New(array_buffer, 0, fields_count));
}

3.2.3 Uint8Array

Uint8Array是ES2015 TypeArray中的一种,可以在浏览器中创建二进制数据,这样就把浏览器、Node连接起来。

3.3 Buffer.allocUnSafe

Buffer.allocUnSafe与Buffer.alloc的区别在于,前者是从采用allocate的策略,尝试从buffer pool中申请内存,而buffer pool是不会进行默认值填充的,所以这种行为是不安全的。


Buffer.allocUnsafe = function(size) {
 assertSize(size);
 return allocate(size);
};

3.4 Buffer.allocUnsafeSlow

Buffer.allocUnsafeSlow有两个大特点: 直接通过c++进行内存分配;不会进行旧值填充。


Buffer.allocUnsafeSlow = function(size) {
 assertSize(size);
 return createBuffer(size, true);
};

4. 结语

字符串与Buffer之间存在较大的差距,同时二者又存在编码关系。通过Node,前端工程师已经深入到网络操作、文件操作等领域,对二进制数据的操作就显得非常重要,因此理解Buffer的诸多细节十分必要。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

--结束END--

本文标题: 深入理解Node中的buffer模块

本文链接: https://www.lsjlt.com/news/12551.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 深入理解Node中的buffer模块
    在Node、ES2015出现之前,前端工程师只需要进行一些简单的字符串或DOM操作就可以满足业务需要,所以对二进制数据是比较陌生。node出现以后,前端面对的技术场景发生了变化,可以深入到网络传输、文件操作...
    99+
    2022-06-04
    模块 Node buffer
  • 深入了解Node中的Buffer
    最开始的时候 JS 只在浏览器端运行,对于 Unicode 编码的字符串容易处理,但是对于二进制和非 Unicode 编码的字符串处理困难。并且二进制是计算机最底层的数据格式,视频/音频/程序/网络包都是以二进制来存储的。所以 Node 需...
    99+
    2023-05-14
    前端 Node.js
  • 深入聊聊Node中的File模块
    在聊 Stream/Buffer 的时候,我们已经开始使用require("fs")引入文件模块做一些操作了文件模块是对底层文件操作的封装,例如文件读写/打开关闭/删除添加等等文件模块最大的特点就是所有的方法都提供的同步...
    99+
    2023-05-14
    Node.js 前端
  • 深入理解Commonjs规范及Node模块实现
    前面的话 Node在实现中并非完全按照CommonJS规范实现,而是对模块规范进行了一定的取舍,同时也增加了少许自身需要的特性。本文将详细介绍NodeJS的模块实现 引入 nodejs是区别于javasc...
    99+
    2022-06-04
    模块 Commonjs Node
  • 一文带你深入了解Node中的Buffer类
    简单来说所谓的Buffer就是Node在V8堆内存之外分配的一块固定大小的内存空间。当Buffer被用console.log打印出来时,会以字节为单位,打印出一串以十六进制表示的值。创建Buffer了解完Buffer的基本概念后,我们再来创...
    99+
    2023-05-14
    前端 Node.js JavaScript
  • 深入理解python中的select模块
    简介 Python中的select模块专注于I/O多路复用,提供了select poll epoll三个方法(其中后两个在Linux中可用,windows仅支持select),另外也提供了kq...
    99+
    2022-06-04
    模块 python select
  • 深入理解python中的atexit模块
    atexit 模块介绍 python atexit 模块定义了一个 register 函数,用于在 python 解释器中注册一个退出函数,这个函数在解释器正常终止时自动执行,一般用来做一些资源清理的操作...
    99+
    2022-06-04
    模块 python atexit
  • 深入理解Python3中的http.client模块
    http 模块简介 Python3 中的 http 包中含有几个用来开发 HTTP 协议的模块。 http.client 是一个底层的 HTTP 协议客户端,被更高层的 urllib.request ...
    99+
    2022-06-04
    模块 http client
  • 深入理解Node.js的HTTP模块
    前言 我们知道传统的HTPP服务器会由Aphche、Nginx、IIS之类的软件来担任,但是nodejs并不需要,nodejs提供了http模块,自身就可以用来构建服务器,而且http模块是由C++实现的,...
    99+
    2022-06-04
    模块 Node js
  • 深入理解Nodejs Global 模块
    浏览器上有自己的全局对象 window,同理, nodejs 下也有自己的全局对象 global,并且在各个模块下 都可以直接访问 global 对象。 在 nodejs 中,除了可以直接使用 V8 Ja...
    99+
    2022-06-04
    模块 Nodejs Global
  • 怎么理解Node.js中的Buffer模块
    这篇文章主要讲解了“怎么理解Node.js中的Buffer模块”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么理解Node.js中的Buffer模块”吧!...
    99+
    2022-10-19
  • 深入理解node.js之path模块
    node之path模块 //引用该模块 var path = require("path"); 1、路径解析,得到规范化的路径格式 //对window系统,目录分隔为'', 对于UNIX系统,分隔...
    99+
    2022-06-04
    模块 node js
  • 深入解析Python中的urllib2模块
    Python 标准库中有很多实用的工具类,但是在具体使用时,标准库文档上对使用细节描述的并不清楚,比如 urllib2 这个 HTTP 客户端库。这里总结了一些 urllib2 的使用细节。 Prox...
    99+
    2022-06-04
    模块 Python
  • python中jieba模块的深入了解
    目录一、前言        二、模块的安装三、jieba模块具体讲解3.1分词模式3.2cut()、lcut()3.2.1cut(s...
    99+
    2022-11-11
  • 怎么理解Node.js中node的模块化
    这篇文章主要介绍“怎么理解Node.js中node的模块化”,在日常操作中,相信很多人在怎么理解Node.js中node的模块化问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”...
    99+
    2022-10-19
  • 详解Node中导入模块require和import的区别
    ES6标准发布后,module成为标准,标准的使用是以export指令导出接口,以import引入模块,但是在我们一贯的node模块中,我们采用的是CommonJS规范,使用require引入模块,使用mo...
    99+
    2022-06-04
    详解 模块 区别
  • 深入了解Python的类与模块化
    目录学习目标1. 面向对象编程:类1.1 面向对象编程的基本概念1.2 自定义类1.3 再谈继承2. 模块2.1 导入模块2.2 导入Python标准模块2.3 单独导入模块中所需对...
    99+
    2022-11-12
  • 深入解析Python编程中JSON模块的使用
    JSON编码支持的基本数据类型为 None , bool , int , float 和 str , 以及包含这些类型数据的lists,tuples和dictionaries。 对于dictionaries...
    99+
    2022-06-04
    模块 Python JSON
  • Node.js 源码阅读深入理解cjs模块系统
    目录前言源码阅读内置模块用户模块总结前言 相信大家都知道如何在 Node.js 中加载一个模块: const fs = require('fs'); const express = ...
    99+
    2022-11-13
  • Node的事件处理和readline模块详解
    目录一、Node的事件处理二、通过Node的readline模块实现终端的输入总结一、Node的事件处理 1、采用事件驱动模型 2、Node是单线程的,采用事件轮询方式来处理事件 3...
    99+
    2022-11-13
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作