iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >解析ConcurrentHashMap: 红黑树的代理类(TreeBin)
  • 218
分享到

解析ConcurrentHashMap: 红黑树的代理类(TreeBin)

2024-04-02 19:04:59 218人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录1、TreeBin内部类分析2、treeifyBin方法分析3、find方法分析总结前一章是get、remove方法分析,喜欢的朋友点击查看。本篇为ConcurrentHashM

前一章是get、remove方法分析,喜欢的朋友点击查看。本篇为ConcurrentHashMap源码系列的最后一篇,来分析一下TreeBin 红黑树代理节点的源码:

1、TreeBin内部类分析

TreeBin是红黑树的代理,对红黑树不太了解的,可以参考:


static final class TreeBin<K,V> extends node<K,V> {
    // 红黑树根节点
    TreeNode<K,V> root;
    // 链表的头节点
    volatile TreeNode<K,V> first;
    // 等待者线程(当前lockState是读状态)
    volatile Thread waiter;
    
    volatile int lockState;
    // values for lockState(lockstate的值)
    static final int WRITER = 1; // set while holding write lock 写锁状态
    static final int WAITER = 2; // set when waiting for write lock 等待者状态(写线程在等待)
    static final int READER = 4; // increment value for setting read lock 读锁状态
    
    TreeBin(TreeNode<K,V> b) {
        // 设置当前节点hash为-2 表示此节点是TreeBin节点
        super(TREEBIN, null, null, null);
        // 使用first 引用 treeNode链表
        this.first = b;
        // r 红黑树的根节点引用
        TreeNode<K,V> r = null;
        // x表示遍历的当前节点
        for (TreeNode<K,V> x = b, next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            // 强制设置当前插入节点的左右子树为null
            x.left = x.right = null;
            // ----------------------------------------------------------------------
            // CASE1:
            // 条件成立:说明当前红黑树是一个空树,那么设置插入元素为根节点
            // 第一次循环,r一定是null
            if (r == null) {
                // 根节点的父节点 一定为 null
                x.parent = null;
                // 颜色改为黑色
                x.red = false;
                // 让r引用x所指向的对象。
                r = x;
            }
			// ----------------------------------------------------------------------
            // CASE2:r != null	
            else {
                // 非第一次循环,都会来带else分支,此时红黑树根节点已经有数据了
                // k 表示 插入节点的key
                K k = x.key;
                // h 表示 插入节点的hash
                int h = x.hash;
                // kc 表示 插入节点key的class类型
                Class<?> kc = null;
                // p 表示 为查找插入节点的父节点的一个临时节点
                TreeNode<K,V> p = r;
                // 这里的for循环,就是一个查找并插入的过程
                for (;;) {
                    // dir (-1, 1)
                    // -1 表示插入节点的hash值大于 当前p节点的hash
                    // 1 表示插入节点的hash值 小于 当前p节点的hash
                    // ph p表示 为查找插入节点的父节点的一个临时节点的hash
                    int dir, ph;
                    // 临时节点 key
                    K pk = p.key;
                    // 插入节点的hash值 小于 当前节点
                    if ((ph = p.hash) > h)
                        // 插入节点可能需要插入到当前节点的左子节点 或者 继续在左子树上查找
                        dir = -1;
                    // 插入节点的hash值 大于 当前节点
                    else if (ph < h)
                        // 插入节点可能需要插入到当前节点的右子节点 或者 继续在右子树上查找
                        dir = 1;
                    // 如果执行到 CASE3,说明当前插入节点的hash 与 当前节点的hash一致,会在case3 做出最终排序。最终
                    // 拿到的dir 一定不是0,(-1, 1)
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        dir = tieBreakOrder(k, pk);
                    // xp 想要表示的是 插入节点的 父节点
                    TreeNode<K,V> xp = p;
                    // 条件成立:说明当前p节点 即为插入节点的父节点
                    // 条件不成立:说明p节点 底下还有层次,需要将p指向 p的左子节点 或者 右子节点,表示继续向下搜索。
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        // 设置插入节点的父节点 为 当前节点
                        x.parent = xp;
                        // 小于P节点,需要插入到P节点的左子节点
                        if (dir <= 0)
                            xp.left = x;
                            // 大于P节点,需要插入到P节点的右子节点
                        else
                            xp.right = x;
                        // 插入节点后,红黑树性质 可能会被破坏,所以需要调用 平衡方法
                        r = balanceInsertion(r, x);
                        break;
                    }
                }
            }
        }
        // 将r 赋值给 TreeBin对象的 root引用。
        this.root = r;
        assert checkInvariants(root);
    }
    
    private final void lockRoot() {
        // 条件成立:说明lockState 并不是 0,说明此时有其它读线程在treeBin红黑树中读取数据。
        if (!U.compareAndSwapint(this, LOCKSTATE, 0, WRITER))
            // 竞争锁的过程
            contendedLock(); // offload to separate method
    }
    
    private final void unlockRoot() {
        // lockstate置为0
        lockState = 0;
    }
    
    private final void contendedLock() {
        boolean waiting = false;
        // 表示lock值
        int s;
        for (;;) {
            // ~WAITER = 11111....01
            // 条件成立:说明目前TreeBin中没有读线程在访问 红黑树
            // 条件不成立:有线程在访问红黑树
            if (((s = lockState) & ~WAITER) == 0) {
                // 条件成立:说明写线程 抢占锁成功
                if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                    if (waiting)
                        // 设置TreeBin对象waiter 引用为null
                        waiter = null;
                    return;
                }
            }
            // lock & 0000...10 = 0, 条件成立:说明lock 中 waiter 标志位 为0,此时当前线程可以设置为1了,然后将当前线程挂起。
            else if ((s & WAITER) == 0) {
                if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
                    waiting = true;
                    waiter = Thread.currentThread();
                }
            }
            // 条件成立:说明当前线程在CASE2中已经将 treeBin.waiter 设置为了当前线程,并且将lockState 中表示 等待者标记位的地方 设置为了1
            // 这个时候,就让当前线程 挂起。。
            else if (waiting)
                LockSupport.park(this);
        }
    }
    
    final TreeNode<K,V> putTreeVal(int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if (p == null) {
                first = root = new TreeNode<K,V>(h, k, v, null, null);
                break;
            }
            else if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                // 当前循环节点xp 即为 x 节点的爸爸
                // x 表示插入节点
                // f 老的头结点
                TreeNode<K,V> x, f = first;
                first = x = new TreeNode<K,V>(h, k, v, f, xp);
                // 条件成立:说明链表有数据
                if (f != null)
                    // 设置老的头结点的前置引用为 当前的头结点。
                    f.prev = x;
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;

                if (!xp.red)
                    x.red = true;
                else {
                    // 表示 当前新插入节点后,新插入节点 与 父节点 形成 “红红相连”
                    lockRoot();
                    try {
                        // 平衡红黑树,使其再次符合规范。
                        root = balanceInsertion(root, x);
                    } finally {
                        unlockRoot();
                    }
                }
                break;
            }
        }
        assert checkInvariants(root);
        return null;
    }
}

2、treeifyBin方法分析

treeifyBin:TreeBin的成员方法,转换链表为红黑树的方法:



private final void treeifyBin(Node<K,V>[] tab, int index) {
    // b:
    // n: tab的长度
    // sc: sizeCtl
    Node<K,V> b; int n, sc;
    if (tab != null) {
        // ---------------------------------------------------------------------------
        // CASE1:
        // 条件成立:说明当前table数组长度未达到 64,此时不进行树化操作,而进行扩容操作。
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            // table进行扩容
            tryPresize(n << 1);
        // ---------------------------------------------------------------------------
        // CASE2:
        // 条件成立:说明当前桶位有数据,且是普通node数据。
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
			// 给头元素b加锁
            synchronized (b) {
                // 条件成立:表示加锁没问题,b没有被其他线程修改过
                if (tabAt(tab, index) == b) {
                    // 下面的for循环逻辑,目的就是把桶位中的单链表转换成双向链表,便于树化~
					// hd指向双向列表的头部,tl指向双向链表的尾部
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
					// 把node单链表转换的双向链表转换成TreeBin对象
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

3、find方法分析

find:TreeBin中的查找方法。


final Node<K,V> find(int h, Object k) {
    if (k != null) {
        // e 表示循环迭代的当前节点:迭代的是first引用的链表
        for (Node<K,V> e = first; e != null; ) {
            // s 保存的是lock临时状态
            // ek 链表当前节点 的key
            int s; K ek;
            // ----------------------------------------------------------------------
            // CASE1:
            // (WAITER|WRITER) => 0010 | 0001 => 0011
            // lockState & 0011 != 0 条件成立:说明当前TreeBin有等待者线程 或者 目前有写操作线程正在加锁
            if (((s = lockState) & (WAITER|WRITER)) != 0) {
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
                e = e.next;
            }
            // ----------------------------------------------------------------------
            // CASE2:
            // 前置条件:当前TreeBin中 等待者线程 或者 写线程 都没有
            // 条件成立:说明添加读锁成功
            else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                         s + READER)) {
                TreeNode<K,V> r, p;
                try {
                    // 查询操作
                    p = ((r = root) == null ? null :
                         r.findTreeNode(h, k, null));
                } finally {
                    // w 表示等待者线程
                    Thread w;
                    // U.getAndAddInt(this, LOCKSTATE, -READER) == (READER|WAITER)
                    // 1.当前线程查询红黑树结束,释放当前线程的读锁 就是让 lockstate 值 - 4
                    // (READER|WAITER) = 0110 => 表示当前只有一个线程在读,且“有一个线程在等待”
                    // 当前读线程为 TreeBin中的最后一个读线程。
                    // 2.(w = waiter) != null 说明有一个写线程在等待读操作全部结束。
                    if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                        (READER|WAITER) && (w = waiter) != null)
                        // 使用unpark 让 写线程 恢复运行状态。
                        LockSupport.unpark(w);
                }
                return p;
            }
        }
    }
    return null;
}

总结

到此为止,ConcurrentHashMap的源码分析就告一段落了,祝大家变得更强~也希望大家多多关注编程网的其他内容!

--结束END--

本文标题: 解析ConcurrentHashMap: 红黑树的代理类(TreeBin)

本文链接: https://www.lsjlt.com/news/128024.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 解析ConcurrentHashMap: 红黑树的代理类(TreeBin)
    目录1、TreeBin内部类分析2、treeifyBin方法分析3、find方法分析总结前一章是get、remove方法分析,喜欢的朋友点击查看。本篇为ConcurrentHashM...
    99+
    2024-04-02
  • ConcurrentHashMap: 红黑树代理类的示例分析
    小编给大家分享一下ConcurrentHashMap: 红黑树代理类的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1、TreeBin内部类分析TreeB...
    99+
    2023-06-15
  • 怎么彻底理解红黑树
    本篇内容主要讲解“怎么彻底理解红黑树”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么彻底理解红黑树”吧!二叉树满足以下两个条件的树就是二叉树:本身是有序树(若...
    99+
    2024-04-02
  • C++中红黑树的示例分析
    这篇文章将为大家详细讲解有关C++中红黑树的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。红黑树红黑树的概念红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以...
    99+
    2023-06-29
  • 关于Java的二叉树、红黑树、B+树详解
    目录1、二叉查找树2、平衡二叉查找树3、红黑树:4、 B树:5、 B+树6、红黑树 VS B+树数组和链表是常用的数据结构,数组虽然查找快(有序数组可以通过二分法查找),但是插入和删...
    99+
    2023-05-20
    Java二叉树 Java红黑树 JavaB+树
  • java实现红黑树的代码怎么写
    本篇内容介绍了“java实现红黑树的代码怎么写”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! 红黑树ja...
    99+
    2024-04-02
  • Java红黑树的数据结构与算法解析
    目录红黑树的介绍红黑树的实现1.节点2.查找3.平衡化颜色反转 插入的实现红黑树的复杂度–总结红黑树的介绍 红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的...
    99+
    2024-04-02
  • 红黑树的实现原理是什么
    本篇文章给大家分享的是有关红黑树的实现原理是什么,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、摘要平衡二叉查找树是一个高度平衡的二叉树,也...
    99+
    2024-04-02
  • C++数据结构红黑树的示例分析
    这篇文章给大家分享的是有关C++数据结构红黑树的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。概念和性质红黑树的概念: 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或...
    99+
    2023-06-29
  • Java数据结构之红黑树的示例分析
    小编给大家分享一下Java数据结构之红黑树的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、红黑树所处数据结构的位置:在JDK源码中, 有treeMap...
    99+
    2023-05-30
    java
  • 红黑树的原理及特点及其在Python中的代码实现
    红黑树和B+树一样,是平衡二叉搜索树。红黑树每个节点都是有颜色的,要么是红色,要么黑色,但树的根是黑色,最底部的叶也是黑色的。还需要注意的是,红黑树任何节点到叶的直接路径包含相同数量的黑色节点。 红黑树如何保持自平衡的特性? ...
    99+
    2024-01-23
  • C语言实现手写红黑树的示例代码
    目录前沿红黑树代码测试前沿 写C的红黑树前建议先看我博客这篇文章Java-红黑树 主要看原理 红黑树代码 #ifndef STUDY_RBTREE_H #define ...
    99+
    2024-04-02
  • Java数据结构之红黑树的原理及实现
    目录为什么要有红黑树这种数据结构红黑树的简介红黑树的基本操作之旋转红黑树之添加元素红黑树之删除结点删除结点没有儿子的情况删除结点仅有一个儿子结点的情况删除结点有两个儿子结点红黑树动态...
    99+
    2024-04-02
  • 基于红黑树插入操作原理及java实现的示例分析
    这篇文章主要介绍基于红黑树插入操作原理及java实现的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!红黑树是一种二叉平衡查找树,每个结点上有一个存储位来表示结点的颜色,可以是RED或BLACK。红黑树具有以下...
    99+
    2023-05-30
    java
  • 分析红黑树在C++云计算服务中的应用模式
    红黑树是一种自平衡二叉查找树,它在C++云计算服务中有着广泛的应用模式。在云计算服务中,红黑树通常被用作数据结构的基础,用于实现高效...
    99+
    2024-04-26
    C++
  • Java7和Java8中的ConcurrentHashMap原理解析
    目录Java7 中 ConcurrentHashMap初始化put 过程分析初始化槽: ensureSegment获取写入锁: scanAndLockForPut扩容: rehash...
    99+
    2024-04-02
  • 分析C++中红黑树的时间复杂度和空间复杂度
    红黑树是一种自平衡的二叉搜索树,它具有以下特点: 每个节点要么是红色,要么是黑色。 根节点是黑色。 每个叶子节点(NIL节点)是黑...
    99+
    2024-04-26
    C++
  • C++ STL容器中红黑树部分模拟实现的示例分析
    这篇文章主要介绍了C++ STL容器中红黑树部分模拟实现的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、红黑树的概念红黑树(Red Black Tree...
    99+
    2023-06-21
  • C语言实现手写Map(数组+链表+红黑树)的示例代码
    目录要求结构红黑树和链表转换策略hash使用要求 需要准备数组集合(List) 数据结构 需要准备单向链表(Linked) 数据结构 需要准备红黑树(Rbtree)数据结构 需要准备...
    99+
    2024-04-02
  • java树结构stream工具类的示例代码详解
    菜单实体类 package com.example.demo.entity; import lombok.AllArgsConstructor; import lombok.Bu...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作