广告
返回顶部
首页 > 资讯 > 后端开发 > Python >浅谈Java锁机制
  • 398
分享到

浅谈Java锁机制

2024-04-02 19:04:59 398人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录1、悲观锁和乐观锁2、悲观锁应用3、乐观锁应用4、CAS5、手写一个自旋锁1、悲观锁和乐观锁 我们可以将锁大体分为两类: 悲观锁 乐观锁 顾名思义,悲观锁总是

1、悲观锁和乐观锁

我们可以将锁大体分为两类:

  • 悲观锁
  • 乐观锁

顾名思义,悲观锁总是假设最坏的情况,每次获取数据的时候都认为别的线程会修改,所以每次在拿数据的时候都会上锁,这样其它线程想要修改这个数据的时候都会被阻塞直到获取锁。比如Mysql数据库中的表锁、行锁、读锁、写锁等,Java中的synchronizedReentrantLock等。

而乐观锁总是假设最好的情况,每次获取数据的时候都认为别的线程不会修改,所以并不会上锁,但是在修改数据的时候需要判断一下在此期间有没有别的线程修改过数据,如果没有修改过则正常修改,如果修改过则这次修改就是失败的。常见的乐观锁有版本号控制、CAS算法等。

2、悲观锁应用

案例如下:


public class LockDemo {

    static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        List<Thread> threadList = new ArrayList<>();
        for (int i = 0; i < 50; i++) {
            Thread thread = new Thread(() -> {
                for (int j = 0; j < 1000; ++j) {
                    count++;
                }
            });
            thread.start();
            threadList.add(thread);
        }
        // 等待所有线程执行完毕
        for (Thread thread : threadList) {
            thread.join();
        }
        System.out.println(count);
    }
}

在该程序中一共开启了50个线程,并在线程中对共享变量count进行++操作,所以如果不发生线程安全问题,最终的结果应该是50000,但该程序中一定存在线程安全问题,运行结果为:


48634

若想解决线程安全问题,可以使用synchronized关键字:


public class LockDemo {

    static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        List<Thread> threadList = new ArrayList<>();
        for (int i = 0; i < 50; i++) {
            Thread thread = new Thread(() -> {
                // 使用synchronized关键字解决线程安全问题
                synchronized (LockDemo.class) {
                    for (int j = 0; j < 1000; ++j) {
                        count++;
                    }
                }
            });
            thread.start();
            threadList.add(thread);
        }
        for (Thread thread : threadList) {
            thread.join();
        }
        System.out.println(count);
    }
}

将修改count变量的操作使用synchronized关键字包裹起来,这样当某个线程在进行++操作时,别的线程是无法同时进行++的,只能等待前一个线程执行完1000次后才能继续执行,这样便能保证最终的结果为50000。

使用ReentrantLock也能够解决线程安全问题:


public class LockDemo {

    static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        List<Thread> threadList = new ArrayList<>();
        Lock lock = new ReentrantLock();
        for (int i = 0; i < 50; i++) {
            Thread thread = new Thread(() -> {
                // 使用ReentrantLock关键字解决线程安全问题
                lock.lock();
                try {
                    for (int j = 0; j < 1000; ++j) {
                        count++;
                    }
                } finally {
                    lock.unlock();
                }
            });
            thread.start();
            threadList.add(thread);
        }
        for (Thread thread : threadList) {
            thread.join();
        }
        System.out.println(count);
    }
}

这两种锁机制都是悲观锁的具体实现,不管其它线程是否会同时修改,它都直接上锁,保证了原子操作。

3、乐观锁应用

由于线程的调度是极其耗费操作系统资源的,所以,我们应该尽量避免线程在不断阻塞和唤醒中切换,由此产生了乐观锁。

数据库表中,我们往往会设置一个version字段,这就是乐观锁的体现,假设某个数据表的数据内容如下:


+----+------+----------+ ------- +
| id | name | passWord | version |
+----+------+----------+ ------- +
|  1 | zs   | 123456   |    1    |
+----+------+----------+ ------- +

它是如何避免线程安全问题的呢?

假设此时有两个线程A、B想要修改这条数据,它们会执行如下的sql语句:


select version from e_user where name = 'zs';

update e_user set password = 'admin',version = version + 1 where name = 'zs' and version = 1;

首先两个线程均查询出zs用户的版本号为1,然后线程A先执行了更新操作,此时将用户的密码修改为了admin,并将版本号加1,接着线程B执行更新操作,此时版本号已经为2了,所以更新肯定是失败的,由此,线程B就失败了,它只能重新去获取版本号再进行更新,这就是乐观锁,我们并没有对程序和数据库进行任何的加锁操作,但它仍然能够保证线程安全。

4、CAS

仍然以最开始做加法的程序为例,在Java中,我们还可以采用一种特殊的方式来实现它:


public class LockDemo {

    static AtomicInteger count = new AtomicInteger(0);

    public static void main(String[] args) throws InterruptedException {
        List<Thread> threadList = new ArrayList<>();
        for (int i = 0; i < 50; i++) {
            Thread thread = new Thread(() -> {
                for (int j = 0; j < 1000; ++j) {
                    // 使用AtomicInteger解决线程安全问题
                    count.incrementAndGet();
                }
            });
            thread.start();
            threadList.add(thread);
        }
        for (Thread thread : threadList) {
            thread.join();
        }
        System.out.println(count);
    }
}

为何使用AtomicInteger类就能够解决线程安全问题呢?

我们来查看一下源码:


public final int incrementAndGet() {
    return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}

count调用incrementAndGet()方法时,实际上调用的是UnSafe类的getAndAddInt()方法:


public final int getAndAddInt(Object var1, long var2, int var4) {
    int var5;
    do {
        var5 = this.getIntVolatile(var1, var2);
    } while(!this.compareAndSwapint(var1, var2, var5, var5 + var4));

    return var5;
}

getAndAddInt()方法中有一个循环,关键的代码就在这里,我们假设线程A此时进入了该方法,此时var1即为AtomicInteger对象(初始值为0),var2的值为12(这是一个内存偏移量,我们可以不用关心),var4的值为1(准备对count进行加1操作)。

首先通过AtomicInteger对象和内存偏移量即可得到主存中的数据值:


var5 = this.getIntVolatile(var1, var2);

获取到var5的值为0,然后程序会进行判断:


!this.compareAndSwapInt(var1, var2, var5, var5 + var4)

compareAndSwapInt()是一个本地方法,它的作用是比较并交换,即:判断var1的值与主存中取出的var5的值是否相同,此时肯定是相同的,所以会将var5+var4的值赋值给var1,并返回true,对true取反为false,所以循环就结束了,最终方法返回1。

这是一切正常的运行流程,然而当发生并发时,处理情况就不太一样了,假设此时线程A执行到了getAndAddInt()方法:


public final int getAndAddInt(Object var1, long var2, int var4) {
    int var5;
    do {
        var5 = this.getIntVolatile(var1, var2);
    } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

    return var5;
}

线程A此时获取到var1的值为0(var1即为共享变量AtomicInteger),当线程A正准备执行下去时,线程B抢先执行了,线程B此时获取到var1的值为0,var5的值为0,比较成功,此时var1的值就变为1;这时候轮到线程A执行了,它获取var5的值为1,此时var1的值不等于var5的值,此次加1操作就会失败,并重新进入循环,此时var1的值已经发生了变化,此时重新获取var5的值也为1,比较成功,所以将var1的值加1变为2,若是在获取var5之前别的线程又修改了主存中var1的值,则本次操作又会失败,程序重新进入循环。

这就是利用自旋的方式来实现一个乐观锁,因为它没有加锁,所以省下了线程调度的资源,但也要避免程序一直自旋的情况发生。

5、手写一个自旋锁


public class LockDemo {

    private AtomicReference<Thread> atomicReference = new AtomicReference<>();

    public void lock() {
        // 获取当前线程对象
        Thread thread = Thread.currentThread();
        // 自旋等待
        while (!atomicReference.compareAndSet(null, thread)) {
        }
    }

    public void unlock() {
        // 获取当前线程对象
        Thread thread = Thread.currentThread();
        atomicReference.compareAndSet(thread, null);
    }

    static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        LockDemo lockDemo = new LockDemo();
        List<Thread> threadList = new ArrayList<>();
        for (int i = 0; i < 50; i++) {
            Thread thread = new Thread(() -> {
                lockDemo.lock();
                for (int j = 0; j < 1000; j++) {
                    count++;
                }
                lockDemo.unlock();
            });
            thread.start();
            threadList.add(thread);
        }
        // 等待线程执行完毕
        for (Thread thread : threadList) {
            thread.join();
        }
        System.out.println(count);
    }
}

使用CAS的原理可以轻松地实现一个自旋锁,首先,AtomicReference中的初始值一定为null,所以第一个线程在调用lock()方法后会成功将当前线程的对象放入AtomicReference,此时若是别的线程调用lock()方法,会因为该线程对象与AtomicReference中的对象不同而陷入循环的等待中,直到第一个线程执行完++操作,调用了unlock()方法,该线程才会将AtomicReference值置为null,此时别的线程就可以跳出循环了。

通过CAS机制,我们能够在不添加锁的情况下模拟出加锁的效果,但它的缺点也是显而易见的:

  • 循环等待占用CPU资源
  • 只能保证一个变量的原子操作
  • 会产生ABA问题

到此这篇关于浅谈Java锁机制的文章就介绍到这了,更多相关Java锁机制内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 浅谈Java锁机制

本文链接: https://www.lsjlt.com/news/137284.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 浅谈Java锁机制
    目录1、悲观锁和乐观锁2、悲观锁应用3、乐观锁应用4、CAS5、手写一个自旋锁1、悲观锁和乐观锁 我们可以将锁大体分为两类: 悲观锁 乐观锁 顾名思义,悲观锁总是...
    99+
    2022-11-12
  • 浅谈Java内省机制
    目录概念JavaBean内省相关API代码案例:获取属性相关信息内省属性的注意事项完整代码概念 JavaBean 在实际编程中,我们常常需要一些用来包装值对象的类,例如Student...
    99+
    2022-11-13
    Java内省机制 Java内省
  • 浅谈Java 代理机制
    目录一、常规编码方式二、代理模式概述三、静态代理3.1、什么是静态代理3.2、代码示例四、Java 字节码生成框架五、什么是动态代理六、JDK 动态代理机制6.1、使用步骤6.2、代...
    99+
    2022-11-12
  • 浅谈Java垃圾回收机制
    目录一.什么是垃圾二.怎么回收垃圾2.1 静态对象什么时候变成垃圾被回收2.2 新生代和年老代三、垃圾回收算法3.1 标记清除算法3.2 复制清除算法(专门用于处理年轻代垃圾的)3....
    99+
    2022-11-12
  • 怎样浅谈Java访问控制机制
    怎样浅谈Java访问控制机制,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Java 访问控制机制的原理是:在某些策略配置文件中预定义好某些代码对某些资源具有某些操作权限,当...
    99+
    2023-06-17
  • 【Android】 浅谈Handler机制
    Handler机制产生的原因 在谈论一个机制之前,需要了解这个机制设计出来是为了解决什么问题。 Handler设计出来就是因为UI线程不能进行耗...
    99+
    2022-06-06
    handler机制 handler Android
  • 浅谈Python pygame绘制机制
    pygame绘制机制简介  屏幕控制 pygame.display • 用来控制Pygame游戏的屏幕 • Pygame有且只有一个屏幕 • 屏幕左上角坐标为(0,0) ...
    99+
    2022-06-02
    pygame绘制机制 python pygame
  • 如何进行Java 同步机制浅谈
    如何进行Java 同步机制浅谈,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Java对多线程的支持与同步机制深受大家的喜爱,似乎看起来使用了synchronized关键字就...
    99+
    2023-06-03
  • 浅谈Swift派发机制
    目录直接派发函数表派发消息机制派发具体派发直接派发 C++ 默认使用的是直接派发,加上 virtual 修饰符可以改成函数表派发。直接派发是最快的,原因是调用指令会少,还可以通过编译...
    99+
    2022-11-12
  • 浅谈Linux信号机制
    目录一、信号列表1.1、实时信号非实时信号1.2、信号状态1.3、信号生命周期1.4、信号的执行和注销二、信号掩码和信号处理函数的继承2.1、信号处理函数的继承2.2、信号掩码的继承2.3、sigwait 与多线程2...
    99+
    2022-06-03
    Linux 信号机制
  • 浅谈AndroidDialog窗口机制
    目录问题引出Dialog源码分析构造方法show()方法问题引出 //创建dialog 方式一 AlertDialog.Builder builder=new AlertDialo...
    99+
    2022-11-13
  • 浅谈numpy广播机制
    目录Broadcast最简单的广播机制稍微复杂的广播机制广播机制到底做了什么一个正确的经典示例一种更便捷的计算方式Broadcast 广播是numpy对不同形状(shape)的数组进...
    99+
    2023-02-15
    numpy 广播机制
  • 浅聊一下Java中的锁机制
    目录synchronized关键字原理使用方法代码示例Lock接口原理使用方法公平锁与非公平锁可重入锁代码示例总结Java中的锁机制是保证多线程并发访问共享资源安全性的重要手段之一。...
    99+
    2023-03-01
    Java锁机制原理 Java锁机制使用 Java锁机制
  • 浅谈Java非阻塞同步机制和CAS
    目录什么是非阻塞同步悲观锁和乐观锁CAS什么是非阻塞同步 非阻塞同步的意思是多个线程在竞争相同的数据时候不会发生阻塞,从而能够在更加细粒度的维度上进行协调,从而极大的减少线程调度的开...
    99+
    2022-11-12
  • 浅谈用java实现事件驱动机制
    由于项目需求,需要为Java提供一套支持事件驱动机制的类库,可以实现类似于C#中的event和delegate机制。众所周知,Java语言本身以及其标准库中并没有提供事件驱动机制的相关接口,虽然Swing(我且认为其不属于标准库,因为一般没...
    99+
    2023-05-31
    java 事件处理机制 ava
  • 浅谈Redis缓冲区机制
    目录Redis缓冲区机制客户端缓冲机制应对输入缓冲区溢出查看输入缓冲区信息如何解决输入缓冲区溢出应对输出缓冲区溢出Monitor命令的执行输出缓冲区设置不合理主从集群中的缓冲区复制缓...
    99+
    2022-11-13
  • 浅谈node的事件机制
    Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient. 在nodejs的...
    99+
    2022-06-04
    浅谈 机制 事件
  • 浅谈Android Aidl 通讯机制
    服务端: 首先是编写一个aidl文件,注意AIDL只支持方法,不能定义静态成员,并且方法也不能有类似public等的修饰符;AIDL运行方法有任何类型的参数和返回值,在jav...
    99+
    2022-06-06
    aidl Android
  • 浅谈Redis的异步机制
    目录前言一、Redis 的阻塞点4 类交互对象和具体的操作之间的关系:切片集群实例交互时的阻塞点二、可以异步执行的阻塞点三、异步的子线程机制总结前言 命令操作、系统配置、关键机制、硬...
    99+
    2022-11-13
  • 浅谈Java的Synchronized锁原理和优化
    目录一、synchronized介绍二、synchronized的使用1.修饰方法三、synchronized的底层实现对象头监视器(Monitor)四、synchronized 锁...
    99+
    2023-05-20
    Java Synchronized锁 Synchronized锁原理 Synchronized锁优化
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作