iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > GO >深入理解go缓存库freecache的使用
  • 176
分享到

深入理解go缓存库freecache的使用

2024-04-02 19:04:59 176人浏览 泡泡鱼
摘要

目录1初始化2读写流程3总结Go开发缓存场景一般使用map或者缓存框架,为了线程安全会使用sync.Map或线程安全的缓存框架。 缓存场景中如果数据量大于百万级别,需要特别考虑数据类

Go开发缓存场景一般使用map或者缓存框架,为了线程安全会使用sync.Map或线程安全的缓存框架。

缓存场景中如果数据量大于百万级别,需要特别考虑数据类型对于GC的影响(注意string类型底层是指针+Len+Cap,因此也算是指针类型),如果缓存key和value都是非指针类型的话就无需多虑了。但实际应用场景中,key和value是(包含)指针类型数据是很常见的,因此使用缓存框架需要特别注意其对gc影响,从是否对GC影响角度来看缓存框架大致分为2类:

  • 零GC开销:比如freecache或bigcache这种,底层基于ringbuf,减小指针个数;
  • 有GC开销:直接基于Map来实现的缓存框架。

对于map而言,gc时会扫描所有key/value键值对,如果其都是基本类型,那么gc便不会再扫描。下面以freecache为例分析下其实现原理,代码示例如下:

func main() {
   cacheSize := 100 * 1024 * 1024
   cache := freecache.NewCache(cacheSize)

   for i := 0; i < N; i++ {
      str := strconv.Itoa(i)
      _ = cache.Set([]byte(str), []byte(str), 1)
   }

   now := time.Now()
   runtime.GC()
   fmt.Printf("freecache, GC took: %s\n", time.Since(now))
   _, _ = cache.Get([]byte("aa"))

   now = time.Now()
   for i := 0; i < N; i++ {
      str := strconv.Itoa(i)
      _, _ = cache.Get([]byte(str))
   }
   fmt.Printf("freecache, Get took: %s\n\n", time.Since(now))
}

1 初始化

freecache.NewCache会初始化本地缓存,size表示存储空间大小,freecache会初始化256个segment,每个segment是独立的存储单元,freecache加维度也是基于segment的,每个segment有一个ringbuf,初始大小为size/256。freecache号称零GC的来源就是其指针是固定的,只有512个,每个segment有2个,分别是rb和slotData(注意切片为指针类型)。

type segment struct {
   rb            RingBuf // ring buffer that stores data
   segId         int
   _             uint32  // 占位
   missCount     int64
   hitCount      int64
   entryCount    int64
   totalCount    int64      // number of entries in ring buffer, including deleted entries.
   totalTime     int64      // used to calculate least recent used entry.
   timer         Timer      // Timer giving current time
   totalEvacuate int64      // used for debug
   totalExpired  int64      // used for debug
   overwrites    int64      // used for debug
   touched       int64      // used for debug
   vacuumLen     int64      // up to vacuumLen, new data can be written without overwriting old data.
   slotLens      [256]int32 // The actual length for every slot.
   slotCap       int32      // max number of entry pointers a slot can hold.
   slotsData     []entryPtr // 索引指针
}

func NewCacheCustomTimer(size int, timer Timer) (cache *Cache) {
    cache = new(Cache)
    for i := 0; i < segmentCount; i++ {
        cache.segments[i] = newSegment(size/segmentCount, i, timer)
    }
}
func newSegment(bufSize int, segId int, timer Timer) (seg segment) {
    seg.rb = NewRingBuf(bufSize, 0)
    seg.segId = segId
    seg.timer = timer
    seg.vacuumLen = int64(bufSize)
    seg.slotCap = 1
    seg.slotsData = make([]entryPtr, 256*seg.slotCap) // 每个slotData初始化256个单位大小
}

2 读写流程

freecache的key和value都是[]byte数组,使用时需要自行序列化和反序列化,如果缓存复杂对象不可忽略其序列化和反序列化带来的影响,首先看下Set流程:

_ = cache.Set([]byte(str), []byte(str), 1)

Set流程首先对key进行hash,hashVal类型uint64,其低8位segID对应segment数组,低8-15位表示slotId对应slotsData下标,高16位表示slotsData下标对应的[]entryPtr某个数据,这里需要查找操作。注意[]entryPtr数组大小为slotCap(初始为1),当扩容时会slotCap倍增。

每个segment对应一个lock(sync.Mutex),因此其能够支持较大并发量,而不像sync.Map只有一个锁。

func (cache *Cache) Set(key, value []byte, expireSeconds int) (err error) {
   hashVal := hashFunc(key)
   segID := hashVal & segmentAndOpVal // 低8位
   cache.locks[segID].Lock() // 加锁
   err = cache.segments[segID].set(key, value, hashVal, expireSeconds)
   cache.locks[segID].Unlock()
}

func (seg *segment) set(key, value []byte, hashVal uint64, expireSeconds int) (err error) {
   slotId := uint8(hashVal >> 8)
   hash16 := uint16(hashVal >> 16)
   slot := seg.getSlot(slotId)
   idx, match := seg.lookup(slot, hash16, key)

   var hdrBuf [ENTRY_HDR_SIZE]byte
   hdr := (*entryHdr)(unsafe.Pointer(&hdrBuf[0]))
   if match { // 有数据更新操作
      matchedPtr := &slot[idx]
      seg.rb.ReadAt(hdrBuf[:], matchedPtr.offset)
      hdr.slotId = slotId
      hdr.hash16 = hash16
      hdr.keyLen = uint16(len(key))
      originAccessTime := hdr.accessTime
      hdr.accessTime = now
      hdr.expireAt = expireAt
      hdr.valLen = uint32(len(value))
      if hdr.valCap >= hdr.valLen {
         // 已存在数据value空间能存下此次value大小
         atomic.AddInt64(&seg.totalTime, int64(hdr.accessTime)-int64(originAccessTime))
         seg.rb.WriteAt(hdrBuf[:], matchedPtr.offset)
         seg.rb.WriteAt(value, matchedPtr.offset+ENTRY_HDR_SIZE+int64(hdr.keyLen))
         atomic.AddInt64(&seg.overwrites, 1)
         return
      }
      // 删除对应entryPtr,涉及到slotsData内存copy,ringbug中只是标记删除
      seg.delEntryPtr(slotId, slot, idx)
      match = false
      // increase capacity and limit entry len.
      for hdr.valCap < hdr.valLen {
         hdr.valCap *= 2
      }
      if hdr.valCap > uint32(maxKeyValLen-len(key)) {
         hdr.valCap = uint32(maxKeyValLen - len(key))
      }
   } else { // 无数据
      hdr.slotId = slotId
      hdr.hash16 = hash16
      hdr.keyLen = uint16(len(key))
      hdr.accessTime = now
      hdr.expireAt = expireAt
      hdr.valLen = uint32(len(value))
      hdr.valCap = uint32(len(value))
      if hdr.valCap == 0 { // avoid infinite loop when increasing capacity.
         hdr.valCap = 1
      }
   }
   
   // 数据实际长度为 ENTRY_HDR_SIZE=24 + key和value的长度    
   entryLen := ENTRY_HDR_SIZE + int64(len(key)) + int64(hdr.valCap)
   slotModified := seg.evacuate(entryLen, slotId, now)
   if slotModified {
      // the slot has been modified during evacuation, we need to looked up for the 'idx' again.
      // otherwise there would be index out of bound error.
      slot = seg.getSlot(slotId)
      idx, match = seg.lookup(slot, hash16, key)
      // assert(match == false)
   }
   newOff := seg.rb.End()
   seg.insertEntryPtr(slotId, hash16, newOff, idx, hdr.keyLen)
   seg.rb.Write(hdrBuf[:])
   seg.rb.Write(key)
   seg.rb.Write(value)
   seg.rb.Skip(int64(hdr.valCap - hdr.valLen))
   atomic.AddInt64(&seg.totalTime, int64(now))
   atomic.AddInt64(&seg.totalCount, 1)
   seg.vacuumLen -= entryLen
   return
}

seg.evacuate会评估ringbuf是否有足够空间存储key/value,如果空间不够,其会从空闲空间尾部后一位(也就是待淘汰数据的开始位置)开始扫描(oldOff := seg.rb.End() + seg.vacuumLen - seg.rb.Size()),如果对应数据已被逻辑deleted或者已过期,那么该块内存可以直接回收,如果不满足回收条件,则将entry从环头调换到环尾,再更新entry的索引,如果这样循环5次还是不行,那么需要将当前oldHdrBuf回收以满足内存需要。

执行完seg.evacuate所需空间肯定是能满足的,然后就是写入索引和数据了,insertEntryPtr就是写入索引操作,当[]entryPtr中元素个数大于seg.slotCap(初始1)时,需要扩容操作,对应方法见seg.expand,这里不再赘述。

写入ringbuf就是执行rb.Write即可。

func (seg *segment) evacuate(entryLen int64, slotId uint8, now uint32) (slotModified bool) {
   var oldHdrBuf [ENTRY_HDR_SIZE]byte
   consecutiveEvacuate := 0
   for seg.vacuumLen < entryLen {
      oldOff := seg.rb.End() + seg.vacuumLen - seg.rb.Size()
      seg.rb.ReadAt(oldHdrBuf[:], oldOff)
      oldHdr := (*entryHdr)(unsafe.Pointer(&oldHdrBuf[0]))
      oldEntryLen := ENTRY_HDR_SIZE + int64(oldHdr.keyLen) + int64(oldHdr.valCap)
      if oldHdr.deleted { // 已删除
         consecutiveEvacuate = 0
         atomic.AddInt64(&seg.totalTime, -int64(oldHdr.accessTime))
         atomic.AddInt64(&seg.totalCount, -1)
         seg.vacuumLen += oldEntryLen
         continue
      }
      expired := oldHdr.expireAt != 0 && oldHdr.expireAt < now
      leastRecentUsed := int64(oldHdr.accessTime)*atomic.LoadInt64(&seg.totalCount) <= atomic.LoadInt64(&seg.totalTime)
      if expired || leastRecentUsed || consecutiveEvacuate > 5 {
      // 可以回收
         seg.delEntryPtrByOffset(oldHdr.slotId, oldHdr.hash16, oldOff)
         if oldHdr.slotId == slotId {
            slotModified = true
         }
         consecutiveEvacuate = 0
         atomic.AddInt64(&seg.totalTime, -int64(oldHdr.accessTime))
         atomic.AddInt64(&seg.totalCount, -1)
         seg.vacuumLen += oldEntryLen
         if expired {
            atomic.AddInt64(&seg.totalExpired, 1)
         } else {
            atomic.AddInt64(&seg.totalEvacuate, 1)
         }
      } else {
         // evacuate an old entry that has been accessed recently for better cache hit rate.
         newOff := seg.rb.Evacuate(oldOff, int(oldEntryLen))
         seg.updateEntryPtr(oldHdr.slotId, oldHdr.hash16, oldOff, newOff)
         consecutiveEvacuate++
         atomic.AddInt64(&seg.totalEvacuate, 1)
      }
   }
}

freecache的Get流程相对来说简单点,通过hash找到对应segment,通过slotId找到对应索引slot,然后通过二分+遍历寻找数据,如果找不到直接返回ErrNotFound,否则更新一些time指标。Get流程还会更新缓存命中率相关指标。

func (cache *Cache) Get(key []byte) (value []byte, err error) {
   hashVal := hashFunc(key)
   segID := hashVal & segmentAndOpVal
   cache.locks[segID].Lock()
   value, _, err = cache.segments[segID].get(key, nil, hashVal, false)
   cache.locks[segID].Unlock()
   return
}
func (seg *segment) get(key, buf []byte, hashVal uint64, peek bool) (value []byte, expireAt uint32, err error) {
   hdr, ptr, err := seg.locate(key, hashVal, peek) // hash+定位查找
   if err != nil {
      return
   }
   expireAt = hdr.expireAt
   if cap(buf) >= int(hdr.valLen) {
      value = buf[:hdr.valLen]
   } else {
      value = make([]byte, hdr.valLen)
   }

   seg.rb.ReadAt(value, ptr.offset+ENTRY_HDR_SIZE+int64(hdr.keyLen))
}

定位到数据之后,读取ringbuf即可,注意一般来说读取到的value是新创建的内存空间,因此涉及到[]byte数据的复制操作。

3 总结

从常见的几个缓存框架压测性能来看,Set性能差异较大但还不是数量级别的差距,Get性能差异不大,因此对于绝大多数场景来说不用太关注Set/Get性能,重点应该看功能是否满足业务需求和gc影响,性能压测比较见:https://golang2.eddycjy.com/posts/ch5/04-perfORMance/

缓存有一个特殊的场景,那就是将数据全部缓存在内存,涉及到更新时都是全量更新(替换),该场景下使用freecache,如果size未设置好可能导致部分数据被淘汰,是不符合预期的,这个一定要注意。为了使用freecache避免该问题,需要将size设置"足够大",但也要注意其内存空间占用。

到此这篇关于深入理解go缓存库freecache的使用的文章就介绍到这了,更多相关go freecache内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

您可能感兴趣的文档:

--结束END--

本文标题: 深入理解go缓存库freecache的使用

本文链接: https://www.lsjlt.com/news/139267.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • 深入理解go缓存库freecache的使用
    目录1初始化2读写流程3总结go开发缓存场景一般使用map或者缓存框架,为了线程安全会使用sync.Map或线程安全的缓存框架。 缓存场景中如果数据量大于百万级别,需要特别考虑数据类...
    99+
    2024-04-02
  • go缓存库freecache怎么使用
    本篇内容介绍了“go缓存库freecache怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!go开发缓存场景一般使用map或者缓存框架...
    99+
    2023-06-29
  • Golang中的缓存库freecache怎么用
    这篇文章主要讲解了“Golang中的缓存库freecache怎么用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Golang中的缓存库freecache怎么用”吧!go开发缓存场景一般使用m...
    99+
    2023-06-29
  • 缓存的奥义:深入理解 ASP 页面片段缓存
    ASP 页面片段缓存的原理 ASP 页面片段缓存允许将动态生成的页面片段存储在服务器内存中,从而避免每次请求时都重新生成这些片段。当用户访问网站时,服务器首先检查缓存中是否存在所请求的页面片段。如果存在,则直接从缓存中检索并返回该片段,...
    99+
    2024-02-21
    ASP 页面片段缓存 性能优化 Web 应用程序
  • 带你深入理解MyBatis缓存机制
    目录一、简介1、缓存机制介绍2. 一级缓存和二级缓存二、一级缓存三、二级缓存3.1 mybatis自带的二级缓存3.1.1 代码测试二级缓存3.1.2 查询结果存入二级缓存的时机3....
    99+
    2024-04-02
  • 深入理解MySQL中MVCC与BufferPool缓存机制
    目录一、MVCC机制undo日志版本链与read-view机制版本链比对规则二、BufferPool机制三、总结一、MVCC机制 MVCC(Multi Version Concurr...
    99+
    2024-04-02
  • Java集合详解5:深入理解LinkedHashMap和LRU缓存
    《Java集合详解系列》是我在完成夯实Java基础篇的系列博客后准备开始写的新系列。这些文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看https://github.com/h3pl/Java-Tut...
    99+
    2023-06-02
  • 深入解读PHPcms栏目缓存的存储方式
    PHPcms是一个非常流行的开源内容管理系统,广泛应用于各种网站的建设中。其中,栏目缓存是一个非常重要的功能,通过缓存可以有效提高网站的访问速度和性能。本文将深入解读PHPcms栏目缓...
    99+
    2024-03-14
    缓存 php cms
  • APCu 深入解析:揭示缓存的秘密
    使用APCu的优势 APCu提供以下主要优势: 提高网站速度: 通过缓存数据和页面,APCu减少了对数据库的查询和页面生成时间,从而提高了整体网站速度。 缓解服务器负载: 缓存数据和页面可以减少对服务器资源的需求,缓解服务器负载并防止...
    99+
    2024-02-29
    APCu、缓存、WordPress、性能优化、PHP
  • 深入理解vue的使用
    目录理解vue的核心理念探讨vue的双向绑定原理及实现vue双向绑定原理实现过程理解vue的核心理念 使用vue会让人感到身心愉悦,它同时具备angular和react的优点,轻量级...
    99+
    2024-04-02
  • 深入理解golangchan的使用
    目录前言见真身结构体发送数据接收数据上手定义发送与接收前言 之前在看golang多线程通信的时候, 看到了go 的管道. 当时就觉得这玩意很神奇, 因为之前接触过的不管是php, j...
    99+
    2024-04-02
  • 深入理解分布式系统中的缓存架构(上)
    本文主要介绍大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景。1 缓存概述缓存概述2 缓存的分类缓存主要分为以下四类缓存的分类1 CDN缓存基本介绍CDN(Content Delivery Network 内容分发网络)的基本原理...
    99+
    2023-06-02
  • 深入理解pytorch库的dockerfile
    目录0. dockerfile命令1. 使用指令的注意点2. dockerfile3. 参考4. 存在的问题0. dockerfile命令 FROM # 基础镜像,一切从这里开...
    99+
    2024-04-02
  • GosyncWaitGroup使用深入理解
    目录基本介绍使用源码分析AddDoneWait注意事项基本介绍 WaitGroup是go用来做任务编排的一个并发原语,它要解决的就是并发 - 等待的问题: 当有一个 goroutin...
    99+
    2024-04-02
  • 缓存的齿轮:深入了解 ASP 页面片段缓存的内部机制
    引言 ASP.NET 页面片段缓存是一个强大的功能,它可以显著提高 web 应用程序的性能。通过将页面的片断存储在内存中,缓存机制减少了对数据库和文件系统的访问,从而加快了页面加载时间。 缓存的齿轮:深入了解 ASP 页面片段缓存 工作原...
    99+
    2024-03-05
    ASP.NET 页面片段缓存 缓存依赖项 缓存策略 性能优化
  • 深入了解Go语言中sync.Pool的使用
    目录1. 简介2. 问题引入2.1 问题描述2.2 解决方案3. 基本使用3.1 使用方式3.2 使用例子    4.使用注意事项4.1 需要...
    99+
    2023-05-15
    Go语言 sync.Pool使用 Go语言 sync.Pool Go sync.Pool
  • 深入了解Go语言内存管理的底层机制
    Go语言的内存管理是基于垃圾回收的机制,它使用了一个称为Go垃圾回收器的组件来自动管理内存的分配和释放。Go垃圾回收器使用了一个基于...
    99+
    2023-10-08
    Golang
  • Spring基于注解的缓存声明深入探究
    目录一、概述二、声明式基于注解的缓存1、@Cacheable注解(1) 默认缓存key的生成(2) 声明式自定义key生成(3) 默认缓存解析(4) 自定义缓存解析(5) 条件式缓存...
    99+
    2022-11-13
    Spring注解的缓存 Spring声明式缓存
  • 关于Java Spring三级缓存和循环依赖的深入理解
    目录一、什么是循环依赖?什么是三级缓存?二、三级缓存如何解决循环依赖?三、使用二级缓存能不能解决循环依赖?一、什么是循环依赖?什么是三级缓存? 【什么是循环依赖】什么是循环依赖很好理...
    99+
    2024-04-02
  • 深入理解Go语言输入函数的原理与用法
    Go语言是一种由Google开发的开源编程语言,它具有简洁、高效、易学的特点,越来越受到开发者的青睐。在Go语言中,输入函数是非常重要的一个概念,掌握其原理与用法对于开发高效的应用程序...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作