iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++ 多线程之互斥量(mutex)详解
  • 538
分享到

C++ 多线程之互斥量(mutex)详解

2024-04-02 19:04:59 538人浏览 八月长安
摘要

目录std::mutexstd::recursive_mutexstd::time_mutexstd::recursive_timed_mutexstd::shared_mutexs

c++ 11中的互斥量,声明在 <mutex> 头文件中,互斥量的使用可以在各种方面,比较常用在对共享数据的读写上,如果有多个线程同时读写一个数据,那么想要保证多线程安全,就必须对共享变量的读写进行保护(上),从而保证线程安全。

互斥量主要有四中类型:

  • std::mutex,最基本的 Mutex 类。
  • std::recursive_mutex递归 Mutex 类。
  • std::time_mutex,限时 Mutex 类。
  • std::recursive_timed_mutex,限时递归 Mutex 类。

当然C++14和C++17各增加了一个:

  • std::shared_timed_mutex,限时读写锁(C++14)
  • std::shared_mutex,读写锁(C++17)

std::mutex

构造函数

mutex();
mutex(const mutex&) = delete;

从上面的构造函数可以看出,std::mutex不允许拷贝构造,当然也不允许move,最初构造的mutex对象是处于未锁定状态的,若构造不成功会抛出 std::system_error 。

析构函数

~mutex();

销毁互斥。若互斥被线程占有,或在占有mutex时线程被终止,则会产生未定义行为。

lock

void lock();

锁定互斥,调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:

  • 如果该互斥量当前没有被其他线程锁住,则调用线程将该互斥量锁住,直到调用unlock之前,该线程一直拥有该锁。
  • 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住,指导其他线程unlock该互斥量。
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

try_lock

bool try_lock();

尝试锁住互斥量,立即返回。成功获得锁时返回 true ,否则返回 false。

如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况:

  • 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。
  • 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

unlock

void unlock();

解锁互斥。互斥量必须为当前执行线程所锁定(以及调用lock),否则行为未定义。

看下面一个简单的例子实现两个线程竞争全局变量g_num对其进行写操作,然后打印输出:

#include <iOStream>
#include <chrono>  // std::chrono
#include <thread>  // std::thread
#include <mutex>  // std::mutex
int g_num = 0;  // 为 g_num_mutex 所保护
std::mutex g_num_mutex;
void slow_increment(int id) 
{
    for (int i = 0; i < 3; ++i) {
        g_num_mutex.lock();
        ++g_num;
        std::cout << "th" << id << " => " << g_num << '\n';
        g_num_mutex.unlock();
        std::this_thread::sleep_for(std::chrono::seconds(1));
    }
}  
int main()
{
    std::thread t1(slow_increment, 0);
    std::thread t2(slow_increment, 1);
    t1.join();
    t2.join();
}

加了互斥量实现有序的写操作并输出:

th0 => 1
th1 => 2
th0 => 3
th1 => 4
th1 => 5
th0 => 6

如果不增加mutex包含,可能输出就不是有序的打印1到6,如下:

  • thth01 => 2 => 2
  • th1 => 3
  • th0 => 4
  • th0 => 5
  • th1 => 6

std::recursive_mutex

如上面所说的,如果使用std::mutex,如果一个线程在执行中需要再次获得锁,会出现死锁现象。要避免这种情况下就需要使用递归式互斥量std::recursive_mutex,它不会产生上述的死锁问题,可以理解为同一个线程多次获得锁“仅仅增加锁的计数”,同时,必须要确保unlock和lock的次数相同,其他线程才可能取得这个mutex。它的接口与std::mutex的完全一样,用法也基本相同除了可重入(必须同一线程才可重入,其他线程需等待),看下面的例子:

#include <iostream>
#include <thread>
#include <mutex>
class X {
    std::recursive_mutex m;
    std::string shared;
  public:
    void fun1() {
      m.lock();
      shared = "fun1";
      std::cout << "in fun1, shared variable is now " << shared << '\n';
      m.unlock();
    }
    void fun2() {
      m.lock();
      shared = "fun2";
      std::cout << "in fun2, shared variable is now " << shared << '\n';
      fun3(); // 递归锁在此处变得有用
      std::cout << "back in fun2, shared variable is " << shared << '\n';
      m.unlock();
    }
    void fun3() {
      m.lock();
      shared = "fun3";
      std::cout << "in fun3, shared variable is now " << shared << '\n';
      m.unlock();
    }
};
int main() 
{
    X x;
    std::thread t1(&X::fun1, &x);
    std::thread t2(&X::fun2, &x);
    t1.join();
    t2.join();
}

在fun2中调用fun3,而fun3中还使用了lock和unlock,只有递归式互斥量才能满足当前情况。

输出如下:

in fun1, shared variable is now fun1
in fun2, shared variable is now fun2
in fun3, shared variable is now fun3
back in fun2, shared variable is fun3

std::time_mutex

timed_mutex增加了带时限的try_lock。即try_lock_fortry_lock_until

try_lock_for尝试锁互斥。阻塞直到超过指定的 timeout_duration 或得到锁,取决于何者先到来。成功获得锁时返回 true,否则返回false 。函数原型如下:

template< class Rep, class Period >
bool try_lock_for( const std::chrono::duration<Rep,Period>& timeout_duration );

timeout_duration小于或等于timeout_duration.zero(),则函数表现同try_lock()。由于调度或资源争议延迟,此函数可能阻塞长于timeout_duration

#include <iostream>
#include <sstream>
#include <thread>
#include <chrono>
#include <vector>
#include <mutex>
std::timed_mutex mutex;
using namespace std::chrono_literals;
void do_work(int id) {
  std::ostringstream stream;
  for (int i = 0; i < 3; ++i) {
    if (mutex.try_lock_for(100ms)) {
      stream << "success ";
      std::this_thread::sleep_for(100ms);
      mutex.unlock();
    } else {
      stream << "failed ";
    }
    std::this_thread::sleep_for(100ms);
  }
  std::cout << "[" << id << "] " << stream.str() << std::endl;
}
int main() {
  // try_lock_for
  std::vector<std::thread> threads;
  for (int i = 0; i < 4; ++i) {
    threads.emplace_back(do_work, i);
  }
  for (auto& t : threads) {
    t.join();
  }
}

[3] failed success failed 
[0] success failed success 
[2] failed failed failed 
[1] success success success 

try_lock_until也是尝试锁互斥。阻塞直至抵达指定的timeout_time或得到锁,取决于何者先到来。成功获得锁时返回 true,否则返回false。

timeout_time与上面的timeout_duration不一样,timeout_duration表示一段时间,比如1秒,5秒或者10分钟,而timeout_time表示一个时间点,比如说要等到8点30分或10点24分才超时。

使用倾向于timeout_time的时钟,这表示时钟调节有影响。从而阻塞的最大时长可能小于但不会大于在调用时的 timeout_time - Clock::now() ,依赖于调整的方向。由于调度或资源争议延迟,函数亦可能阻塞长于抵达timeout_time之后。同try_lock(),允许此函数虚假地失败并返回false,即使在 timeout_time 前的某点任何线程都不锁定互斥。函数原型如下:

template< class Clock, class Duration >
bool try_lock_until( const std::chrono::time_point<Clock,Duration>& timeout_time);

看下面的例子:

#include <iostream>
#include <sstream>
#include <thread>
#include <chrono>
#include <vector>
#include <mutex>
std::timed_mutex mutex;
using namespace std::chrono;
void do_work() {
    mutex.lock();
    std::cout << "thread 1, sleeping..." << std::endl;
    std::this_thread::sleep_for(std::chrono::seconds(4));
    mutex.unlock();
}
void do_work2() {
    auto now = std::chrono::steady_clock::now();
    if (mutex.try_lock_until(now + 5s)) {
        auto end = steady_clock::now();
        std::cout << "try_lock_until success, ";
        std::cout << "time use: " << duration_cast<milliseconds>(end-now).count() 
            << "ms." << std::endl;
        mutex.unlock();
    } else {
        auto end = steady_clock::now();
        std::cout << "try_lock_until failed, ";
        std::cout << "time use: " << duration_cast<milliseconds>(end-now).count() 
            << "ms." << std::endl;
    }
}
int main() {
  // try_lock_until
  std::thread t1(do_work);
  std::thread t2(do_work2);
  t1.join();
  t2.join();
}

获得锁时输出:

thread 1, sleeping...
try_lock_until success, time use: 4000ms.

修改一下,让其超时,输出:

thread 1, sleeping...
try_lock_until failed, time use: 5000ms.

std::recursive_timed_mutex

以类似std::recursive_mutex的方式,recursive_timed_mutex提供排他性递归锁,同线程可以重复获得锁。另外,recursive_timed_mutex通过try_lock_fortry_lock_until方法,提供带时限地获得recursive_timed_mutex锁,类似std::time_mutex

std::shared_mutex

c++ 17 新出的具有独占模式和共享模式的锁。共享模式能够被std::shared_lock(这个后面再详细将)占有。

std::shared_mutex 是读写锁,把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。

它提供两种访问权限的控制:共享性(shared)和排他性(exclusive)。通过lock/try_lock获取排他性访问权限(仅有一个线程能占有互斥),通过lock_shared/try_lock_shared获取共享性访问权限(多个线程能共享同一互斥的所有权)。这样的设置对于区分不同线程的读写操作特别有用。

std::shared_mutex通常用于多个读线程能同时访问同一资源而不导致数据竞争,但只有一个写线程能访问的情形。比如,有多个线程调用shared_mutex.lock_shared(),多个线程都可以获得锁,可以同时读共享数据,如果此时有一个写线程调用 shared_mutex.lock(),则读线程均会等待该写线程调用shared_mutex.unlock()。对于C++11 没有提供读写锁,可使用 boost::shared_mutex

std::shared_mutex新增加的三个接口:

void lock_shared();
bool try_lock_shared();
void unlock_shared();

一个简单例子如下:

#include <iostream>
#include <mutex>  // 对于 std::unique_lock
#include <shared_mutex>
#include <thread>
class ThreadSafeCounter {
 public:
  ThreadSafeCounter() = default;
  // 多个线程/读者能同时读计数器的值。
  unsigned int get() const {
    std::shared_lock<std::shared_mutex> lock(mutex_);
    return value_;
  }
  // 只有一个线程/写者能增加/写线程的值。
  void increment() {
    std::unique_lock<std::shared_mutex> lock(mutex_);
    value_++;
  }
  // 只有一个线程/写者能重置/写线程的值。
  void reset() {
    std::unique_lock<std::shared_mutex> lock(mutex_);
    value_ = 0;
  }
 private:
  mutable std::shared_mutex mutex_;
  unsigned int value_ = 0;
};
int main() {
  ThreadSafeCounter counter;
  auto increment_and_print = [&counter]() {
    for (int i = 0; i < 3; i++) {
      counter.increment();
      std::cout << std::this_thread::get_id() << ' ' << counter.get() << '\n';
      // 注意:写入 std::cout 实际上也要由另一互斥同步。省略它以保持示例简洁。
    }
  };
  std::thread thread1(increment_and_print);
  std::thread thread2(increment_and_print);
  thread1.join();
  thread2.join();
}
// 解释:下列输出在单核机器上生成。 thread1 开始时,它首次进入循环并调用 increment() ,
// 随后调用 get() 。然而,在它能打印返回值到 std::cout 前,调度器将 thread1 置于休眠
// 并唤醒 thread2 ,它显然有足够时间一次运行全部三个循环迭代。再回到 thread1 ,它仍在首个
// 循环迭代中,它最终打印其局部的计数器副本的值,即 1 到 std::cout ,再运行剩下二个循环。
// 多核机器上,没有线程被置于休眠,且输出更可能为递增顺序。

可能的输出:

139847802500864 1
139847802500864 2
139847802500864 3
139847794108160 4
139847794108160 5
139847794108160 6

std::shared_timed_mutex

它是从C++14 才提供的限时读写锁:std::shared_timed_mutex

对比std::shared_mutex新增下面两个接口,其实这两个接口与上面讲到的std::timed_mutextry_lock_fortry_lock_until类似。都是限时等待锁。只不过是增加了共享属性。

template< class Rep, class Period >
bool try_lock_shared_for( const std::chrono::duration<Rep,Period>& timeout_duration );
template< class Clock, class Duration >
bool try_lock_shared_until( const std::chrono::time_point<Clock,Duration>& timeout_time );

总结

由于它们额外的复杂性,读/写锁std::shared_mutex , std::shared_timed_mutex优于普通锁std::mutexstd::timed_mutex的情况比较少见。但是理论上确实存在。

如果在频繁但短暂的读取操作场景,读/写互斥不会提高性能。它更适合于读取操作频繁且耗时的场景。当读操作只是在内存数据结构中查找时,很可能简单的锁会胜过读/写锁。

如果读取操作的开销非常大,并且您可以并行处理许多操作,那么在某些时候增加读写比率应该会导致读取/写入器性能优于排他锁的情况。断点在哪里取决于实际工作量。

另请注意,在持有锁的同时执行耗时的操作通常是一个坏兆头。可能有更好的方法来解决问题,然后使用读/写锁。

还要注意,在使用mutex时,要时刻注意lock()与unlock()的加锁临界区的范围,不能太大也不能太小,太大了会导致程序运行效率低下,大小了则不能满足我们对程序的控制。并且我们在加锁之后要及时解锁,否则会造成死锁,lock()与unlock()应该是成对出现。

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!     

--结束END--

本文标题: C++ 多线程之互斥量(mutex)详解

本文链接: https://www.lsjlt.com/news/140550.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C++ 多线程之互斥量(mutex)详解
    目录std::mutexstd::recursive_mutexstd::time_mutexstd::recursive_timed_mutexstd::shared_mutexs...
    99+
    2022-11-13
  • C#多线程中的互斥锁Mutex
    一、简介 Mutex的突出特点是可以跨应用程序域边界对资源进行独占访问,即可以用于同步不同进程中的线程,这种功能当然这是以牺牲更多的系统资源为代价的。 主要常用的两个方法: publ...
    99+
    2022-11-13
  • C#多线程中的互斥锁Mutex怎么用
    本篇内容主要讲解“C#多线程中的互斥锁Mutex怎么用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C#多线程中的互斥锁Mutex怎么用”吧!一、简介Mutex的突出特点是可以跨应用程序域边界对...
    99+
    2023-06-30
  • C++详解多线程中的线程同步与互斥量
    目录线程同步互斥量线程同步 #include <stdio.h> #include <pthread.h> #include <unistd.h>...
    99+
    2022-11-13
  • C++多线程互斥锁和条件变量的详解
    目录互斥锁:std::mutex::try_lock         条件变量:condition_variable总结我们了解互斥...
    99+
    2022-11-13
  • C++多线程之互斥锁与死锁
    目录1.前言2.互斥锁2.1 互斥锁的特点2.2 互斥锁的使用2.3 std::lock_guard3.死锁3.1 死锁的含义3.2 死锁的例子3.3 死锁的解决方法1.前言 比如说...
    99+
    2022-11-12
  • C++多线程之使用Mutex和Critical_Section
    在C++中,我们可以使用互斥锁(Mutex)和临界区(Critical Section)来实现多线程同步。**Mutex:**互斥锁...
    99+
    2023-09-11
    C++
  • 浅谈c++11线程的互斥量
    目录为什么需要互斥量独占互斥量std::mutex原子操作为什么需要互斥量 在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源。这个过程有点类似于,公司部门里,我在使用着...
    99+
    2022-11-12
  • C#多线程系列之进程同步Mutex类
    Mutex 中文为互斥,Mutex 类叫做互斥锁。它还可用于进程间同步的同步基元。 Mutex 跟 lock 相似,但是 Mutex 支持多个进程。Mutex 大约比 lock 慢 ...
    99+
    2022-11-13
  • C++多线程中的线程同步与互斥量实例分析
    本篇内容介绍了“C++多线程中的线程同步与互斥量实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!线程同步#include &...
    99+
    2023-06-30
  • C#多线程之线程池ThreadPool详解
    一、ThreadPool概述 提供一个线程池,该线程池可用于执行任务、发送工作项、处理异步 I/O、代表其他线程等待以及处理计时器。 创建线程需要时间。如果有不同的小任务要完成,就可...
    99+
    2022-11-13
  • C++多线程之使用Mutex的方法是什么
    在C++中使用Mutex(互斥锁)来实现多线程同步的方法如下:1. 包含头文件:首先要包含头文件 ``。2. 创建Mutex对象:使...
    99+
    2023-09-14
    C++
  • c++11线程为什么需要互斥量
    这篇文章给大家分享的是有关c++11线程为什么需要互斥量的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。为什么需要互斥量在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源。这个过程有点类似于,公司部门里...
    99+
    2023-06-15
  • python多线程互斥锁与死锁问题详解
    目录一、多线程共享全局变量二、给线程加一把锁锁三、死锁问题总结一、多线程共享全局变量 代码实现的功能: 创建work01与worker02函数,对全局变量进行加一操作创建main函数...
    99+
    2022-11-13
  • 详解java中的互斥锁信号量和多线程等待机制
    互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此。也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问互斥锁在java中...
    99+
    2023-05-31
    java 互斥锁 信号量
  • 总结java多线程之互斥与同步解决方案
    目录一、线程互斥与同步二、synchronized三、轻量锁与偏向锁一、线程互斥与同步 互斥:指的是多个线程不能同时访问共享变量 同步:指的是多个线程按指定的顺序执行操作 在同时有多...
    99+
    2022-11-12
  • C++11线程、互斥量及条件变量怎么创建
    这篇“C++11线程、互斥量及条件变量怎么创建”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++11线程、互斥量及条件变量...
    99+
    2023-07-05
  • 详解C语言编程之thread多线程
    目录线程创建与结束线程的创建方式:线程的结束方式:join()detach()互斥锁<mutex> 头文件介绍std::mutex 介绍std::lock_guardst...
    99+
    2022-11-12
  • GO语言协程互斥锁Mutex和读写锁RWMutex用法实例详解
    sync.Mutex Go中使用sync.Mutex类型实现mutex(排他锁、互斥锁)。在源代码的sync/mutex.go文件中,有如下定义: // A Mutex is a m...
    99+
    2022-11-13
  • C/C++中多进程之间的线程如何利用XSI IPC共享内存分配互斥量进行同步
    这篇文章主要介绍了C/C++中多进程之间的线程如何利用XSI IPC共享内存分配互斥量进行同步,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。#include <stdi...
    99+
    2023-06-03
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作