Python 官方文档:入门教程 => 点击学习
目录0写在前面1毛玻璃特效2浮雕特效3油画特效4马赛克特效5素描特效6怀旧特效7流年特效8卡通特效0 写在前面 图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算&mda
图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差、灰度变换、颜色通道融合等,从而达到期望的效果。图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜。
本文采用面向对象设计,定义了一个图像处理类ImgProcess,使图像特效算法的应用更简洁,例如
import cv2
import numpy as np
process = ImgProcess('1.jpg')
glassImg = process.glass()
cv2.imshow("glass", glassImg)
cv2.waiTKEy(delay = 0)
就可以生成毛玻璃特效处理过的图片。这个类的构造函数为
class ImgProcess:
def __init__(self, img) -> None:
self.src = cv2.imread(img)
self.gray = cv2.cvtColor(self.src, cv2.COLOR_BGR2GRAY)
self.h, self.w = self.src.shape[:2]
读取的是图像的基本信息。本文还是把冰冰作为模特~
那么下面,正式开始各种算法的介绍吧~
毛玻璃特效,是利用图像邻域内随机一个像素点颜色代替当前像素,从而实现毛玻璃一般朦胧模糊的效果。
# 毛玻璃特效
def glass(self):
glassImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h - 6):
for j in range(self.w - 6):
index = int(np.random.random() * 6)
glassImg[i, j] = self.src[i + index, j + index]
return glassImg
浮雕特效,是让要呈现的图像看起来“突起于石头表面”,根据凹凸程度不同形成三维的立体效果。数学原理是先刻画处图像的轮廓,再降低边缘周围的像素值,从而产生一张立体浮雕效果。
# 浮雕特效
def relief(self):
reliefImg = np.zeros((self.h, self.w, 1), np.uint8)
for i in range(self.h):
for j in range(self.w - 1):
edge = int(self.gray[i, j]) - int(self.gray[i, j + 1]) # 得到边缘
val = edge + 120 # 产生立体感
if val > 255:
val = 255
if val < 0:
val = 0
reliefImg[i, j] = val
return reliefImg
油画特效,是让图像看上去像颜料所画,产生一种古典、褶皱的效果。几乎所有修图软件都支持油画特效,其数学原理是
def oil(self):
oilImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(2, self.h - 2):
for j in range(2, self.w - 2):
# 量化向量
quant = np.zeros(8, np.uint8)
# 4x4卷积核
for k in range(-2, 2):
for t in range(-2, 2):
level = int(self.gray[i + k, j + t] / 32)
# 量化计数
quant[level] = quant[level] + 1
# 求最大量化值及其索引
valMax = max(quant)
valIndex = list(quant).index(valMax)
# 像素平均
for k in range(-2, 2):
for t in range(-2, 2):
if self.gray[i + k, j + t] >= (valIndex * 32) \
and self.gray[i + k, j + t] <= ((valIndex + 1) * 32):
(b, g, r) = self.src[i + k, j + t]
oilImg[i, j] = (b, g, r)
return oilImg
马赛克特效,是当前使用较为广泛的一种图像或视频处理手段,它将图像或视频中特定区域的色阶细节劣化并造成色块打乱的效果,主要目的通常是使特定区域无法辨认。其数学原理很简单,就是让某个集合内的像素相同即可。
# 马赛克特效
def mask(self):
maskImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h - 5):
for j in range(self.w - 5):
if i%5==0 and j%5==0 :
for k in range(5):
for t in range(5):
(b, g, r) = self.src[i, j]
maskImg[i + k, j + t] = (b, g, r)
return maskImg
素描特效,是使用单一色彩表现明度变化的绘画。数学原理是采用高斯模糊与灰度倒置的方式产生素描的空间造型。
# 素描特效
def sketch(self):
temp = 255 - self.gray
gauss = cv2.GaussianBlur(temp, (21, 21), 0)
inverGauss = 255 - gauss
return cv2.divide(self.gray, inverGauss, scale = 127.0)
怀旧特效,是基于心理学公式对原图像三个色彩通道进行变换和低通滤波,产生怀旧的光影效果。
心理学公式(人眼对绿色更敏感):
B= 0.272 * r + 0.534 * g + 0.131 * b
G = 0.349 * r + 0.686 * g + 0.168 * b
R = 0.393 * r + 0.769 * g + 0.189 * b
# 怀旧特效
def old(self):
oldImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h):
for j in range(self.w):
b = 0.272 * self.src[i, j][2] + 0.534 * self.src[i, j][1] + 0.131 * self.src[i, j][0]
g = 0.349 * self.src[i, j][2] + 0.686 * self.src[i, j][1] + 0.168 * self.src[i, j][0]
r = 0.393 * self.src[i, j][2] + 0.769 * self.src[i, j][1] + 0.189 * self.src[i, j][0]
if b > 255:
b = 255
if g > 255:
g = 255
if r > 255:
r = 255
oldImg[i, j] = np.uint8((b, g, r))
return oldImg
流年特效,是美图软件常用的特性处理手段。其数学原理是基于原图像蓝色通道进行变换,变换采取经验公式14√6
# 流年特效
def fleet(self):
fleetImg = np.zeros((self.h, self.w, 3), np.uint8)
for i in range(self.h):
for j in range(0, self.w):
b = math.sqrt(self.src[i, j][0]) * 14
g = self.src[i, j][1]
r = self.src[i, j][2]
if b > 255:
b = 255
fleetImg[i, j] = np.uint8((b, g, r))
return fleetImg
卡通特效,顾名思义,是卡通特效。
# 卡通特效
def cartoon(self):
num = 7 # 双边滤波数目
for i in range(num):
cv2.bilateralFilter(self.src, d = 9, sigMacolor = 5, sigmaSpace = 3)
median = cv2.medianBlur(self.gray, 7)
edge = cv2.adaptiveThreshold(median, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize = 5, C = 2)
edge = cv2.cvtColor(edge, cv2.COLOR_GRAY2RGB)
return cv2.bitwise_and(self.src, edge)
以上就是python中八大图像特效算法的示例详解的详细内容,更多关于Python图像特效算法的资料请关注编程网其它相关文章!
--结束END--
本文标题: Python中八大图像特效算法的示例详解
本文链接: https://www.lsjlt.com/news/141627.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0