广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++超详细讲解稀疏矩阵
  • 310
分享到

C++超详细讲解稀疏矩阵

2024-04-02 19:04:59 310人浏览 泡泡鱼
摘要

目录稀疏矩阵矩阵与稀疏矩阵的定义稀疏矩阵的转置详细思路思路一思路二稀疏矩阵的乘法详细思路稀疏矩阵 矩阵与稀疏矩阵的定义 Q:什么是矩阵 A:数学上,一个矩阵由 m 行 n 列的元素组

稀疏矩阵

矩阵与稀疏矩阵的定义

Q:什么是矩阵

A:数学上,一个矩阵由 m 行 n 列的元素组成,是一个 m 行,n 列的表,m 和 n 是矩阵的维度。一般地,写作 mxn(读作“m乘n”)来指明一个 m 行 n 列矩阵。矩阵的元素个数总计为 mn 个。如果 m 等于 n ,矩阵为方阵。

一般情况下,矩阵的标准存储方式是一个二维数组 a[MAX_ROWS][MAX_COLS] 。利用这种存储方式,可以通过 a[i][j] ,通过行下标,列下标快速找到任意元素的存储位置。

Q:什么是稀疏矩阵

A:一个矩阵的绝大部分都为零元素,我们把这种矩阵称为稀疏矩阵。

如图:矩阵中只有 2/15 是非零元素,这就是一个标准的稀疏矩阵

Q:二维数组储存矩阵的缺点

A:如果一个矩阵中包含很多零元素(是稀疏矩阵),就会浪费大量的存储空间。因此,稀疏矩阵的存储表示只需存储非零元素。

Q:稀疏矩阵的存储方式

A:通过对矩阵的分析,我们发现使用三元组 <row,col,value> 能够唯一的刻画矩阵的任意一个元素。这意味者可以使用三元数组来存储表示稀疏矩阵。

代码演示

#define MAX_TERMS 101	//定义最大长度 
typedef struct{
	int col;
	int row;
	int xalue;
}term;
term a[MAX_TERMS];

我们可以用 a[0].row 表示行的数目,用 a[0].col 表示列的数目,用 a[0].value 表示非零元素的总数。其他位置 row 域存放行下标, col 域存放列下标,value 域存放元素值。三元组按照行的顺序排序,并且在同一行内按照列的顺序排序。

稀疏矩阵存储为三元组

 
 
a[0]564
a[1]0015
a[2]1111
a[3]236
a[4]409

稀疏矩阵的转置

详细思路

为了转置一个矩阵,必须交换它的行和列。也就是说,原矩阵的任意元素 a[i][j] 应该成为其转置矩阵的元素 b[j][i]

思路一

依次循环每一列,找到每一列的所有元素并把他们储存在转置矩阵的对应的行上。

//伪代码
for 对于 j 列的所有元素
    把元素<i,j,value>放置在元素<j,i,value>中

代码演示

void transpose(term a[],term b[])
//b是a的转置 
{
	int n,i,j,currentb;
	n=a[0].value;			//元素总数 
	b[0].row=a[0].col;		//b的行数=a的列数
	b[0].co 1=a[0].row;	    //b的列数=a的行数
	b[0].value =n;
	if(n> 0) 
	{// 非零矩阵 
		currentb=1;
		for(i=0;i<a[0].col;i++)
		//按a的列转置
			for(j=1;j<=n;j++)
			//找出当前列的所有元素
				if(a[j].col==i)
				{//元素是当前列的,加入b
					b[currentb]. row=a[j]. col;
					b[currentb]. col=a[j]. row;
					b[currentb]. value=a[j]. value;
					currentb++;
				}
	}
}

思路二

首先确定原矩阵中每一列的元素个数,这也就是其转置矩阵中每一行的元素个数。于是就可以得到转置矩阵每行的起始位置,从而,可以将原矩阵的元素依次移到其转置矩阵中的恰当位置。

代码演示

void fast transpose(term a[], term b[])
{
//将a的转置矩阵存放于b中 
	int row terms[MAX_COL], starting pos[MAX_COL]; 
	int i,j, num_cols=a[0].col, num_terms=a[0].value;
	b[0].row=num_cols;b[0].col=a[0].row;
	b[0].value=num_terms;
	if(num_terms>0){//非零矩阵
		for(i=0;i<num_cols;i++)
			row_terms[i]=0;
		for(i=1;i<=num_terms;i++)
			row_terms[a[i]. co]]++;
		starting_pos[0]=1;
		for(i=1;i<num cols;i++)
			starting_pos[i]=starting_pos[i-1]+row_terms[i-l];
		for(i=1;i<=num_terms;i++){
			j=starting_pos[a[i].col]++;
			b[j].row=a[i].col;b[j].col=a[i].row;
			b[j].value=a[i].value;
		}
	}
}

稀疏矩阵的乘法

Q:什么是矩阵乘法

A:设A为 mxp 的矩阵,B为 pxn 的矩阵,那么称 mxn 的矩阵D为矩阵A与B的乘积,记作D=AB,其中矩阵D中的第 i 行第 j 列元素可以表示为:

注意:两个稀疏矩阵的乘积可能不再是稀疏矩阵

详细思路

我们可以按照行的顺序计算D的元素,把元素存放到正确的位置,这样就不用移动已计算出的元素的位置。一般情况下,必须遍历整个B才能得到第 j 列的所有元素。但是,我们可以先计算 B 的转置,使列元素顺序相续排序,可以避免重复多次遍历整个 B 。

对于找出的 A 的第 i 行和 B 的第 j 列的所有元素,做合并操作就能实现矩阵乘法。

代码演示

void storesum(term a[],int *totald,int row,int column,int *sum)
{//如果 *sum!=0,它的行和列存储位置为 d 中的 *totald+1
	if(*sum)
		if(*tptald<MAX_TERMS)
		{
			d[++*totald].row=row;
			d[*totald].col=column;
			d[*totald].value=*sum;
			*sum=0;
		}
		else{
			fprintf(stderr,"Numbers of terms in product exceeds %d\n",MAX_TERMS); 
			exit(1);
		}
}
void mmult(term a[], term b[], term d[])
//将两个稀疏矩阵相乘 
{
	int i,j,column,totalb=b[0].value,totald=0; 
	int rows_a=a[0].row,cols_a=a[0].col;
	totala=a[0].value;int cols_b=b[0].col;
	int row_begin=1, row=a[1].row, sum=0; 
	int new_b[MAX-TERMS][3];
	if(cols_a!=b[0].row){
		fprintf(stderr,"Incompatible matrices\n"); 
		exit(1);
	}
	fast_transpose(b.new_b);
	//设置边界条件
	a[totala+1].row=rows_a;
	new_b[totalb+1].row=cols_b; 
	new_b[totalb+1].col=0;
	for(i=1;i<=totala;){
		column=new_b[1].row; 
		for(j=1;j<=totalb+1;){
		//将a的行乘以b的列
			if(a[i].row!=row){
				storesum(d,&totald,row,column,&sum);
				i=row_begin;
				for(;new_b[j].row==column;j++)
					;
				column=new_b[j]. row;
			}
			else if(new_b[j].row!=column){
				storesum(d,&totald,row,column,&sum); 
				i=row_begin;
				column=new_b[j].row;
			}
			else switch(COMPARE(a[i].col,new_b[j].col)){
				case-1://转到a中的下一项
					i++;break;
				case 0://添加项,转到a和b的下一项 
					sum+=(a[i++].value*new_b[j++].value); break;
				case 1://来到b的下一项
					j++;
			}
	}// for j<=totalb+1 结束循环 
	for(;a[i].row==row;i++)
		;
	row_begin=i;row=a[i].row;
	}//for i<=totala 结束循环 
	d[0].row=rows_a;
	d[0].col=cols_b;d[0].value=totald;
}

到此这篇关于c++超详细讲解稀疏矩阵的文章就介绍到这了,更多相关C++稀疏矩阵内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++超详细讲解稀疏矩阵

本文链接: https://www.lsjlt.com/news/149663.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C++超详细讲解稀疏矩阵
    目录稀疏矩阵矩阵与稀疏矩阵的定义稀疏矩阵的转置详细思路思路一思路二稀疏矩阵的乘法详细思路稀疏矩阵 矩阵与稀疏矩阵的定义 Q:什么是矩阵 A:数学上,一个矩阵由 m 行 n 列的元素组...
    99+
    2022-11-13
  • Python稀疏矩阵scipy.sparse包使用详解
    目录1. 前言2. 导入包3. 稀疏矩阵总览4. 稀疏矩阵详细介绍4.1 coo_matrix4.2 dok_matrix4.3 lil_matrix4.4 dia_matrix4....
    99+
    2023-02-16
    Python稀疏矩阵 Python scipy.sparse包
  • C++BoostUtility超详细讲解
    目录一、说明二、Boost.Utility库示例和代码一、说明 Boost.Utility 库是杂项、有用的类和函数的集合,它们太小而无法在独立库中维护。虽然实用程序很小并且可以快速...
    99+
    2022-12-08
    C++ Boost Utility C++ Utility库
  • C++BoostUuid超详细讲解
    目录一、说明二、Boost.Uuid库示例和代码一、说明 Boost.Uuid 为 UUID 提供生成器。 UUID 是不依赖于中央协调实例的通用唯一标识符。例如,没有数据库存储所有...
    99+
    2022-12-08
    C++ Boost Uuid C++ Uuid标识符
  • C++超详细讲解泛型
    目录1.了解泛型编程2.函数模板2.1简单示例2.2多个模板参数2.3模板实例化2.4模板和普通函数同时存在2.5函数模板不支持定义和声明分离3.类模板3.1简单示例3.2成员函数声...
    99+
    2022-11-13
  • C++ Boost Assign超详细讲解
    目录说明Exercise说明 Boost.Assign Boost.Assign 库提供了帮助函数来初始化容器或向容器添加元素。如果需要将许多元素存储在一个容器中,这些函数尤其有用。...
    99+
    2022-12-09
    C++ Boost Assign C++ Assign库
  • C++超详细讲解标准库
    目录一、有趣的重载二、C++ 标准库三、小结一、有趣的重载 操作符 << 的原生意义是按位左移,例:1 <<2; 其意义是将整数 1 按位左移2位,即:000...
    99+
    2022-11-13
  • C++BoostPropertyTree示例超详细讲解
    目录一、提要二、应用示例练习一、提要 借助类 boost::property_tree::ptree,Boost.PropertyTree 提供了一个树结构来存储键/值对。树形结构意...
    99+
    2022-11-13
    C++ Boost PropertyTree C++ Boost PropertyTree示例
  • C++BoostVariant示例超详细讲解
    目录一、提要二、示例一、提要         Boost.Variant 提供了一个类似于 unio&...
    99+
    2022-11-13
    C++ Boost Variant C++ Boost Variant示例
  • C++BoostOptional示例超详细讲解
    目录一、概述二、Boost.Optional一、概述 数据结构类似于容器,因为它们可以存储一个或多个元素。但是,它们与容器不同,因为它们不支持容器通常支持的操作。例如,使用本部分介绍...
    99+
    2022-11-13
    C++ Boost Optional C++ Boost Optional示例
  • C++超详细讲解析构函数
    目录特性析构函数处理自定义类型编译器生成的默认析构函数特性 析构函数是特殊的成员函数 特征如下: 析构函数名是~类名;无参数无返回值;一个类有且只有一个析构函数;对象声明周期结束,编...
    99+
    2022-11-13
  • C++超详细讲解构造函数
    目录类的6个默认成员函数构造函数特性编译器生成的默认构造函数成员变量的命名风格类的6个默认成员函数 如果我们写了一个类,这个类我们只写了成员变量没有定义成员函数,那么这个类中就没有函...
    99+
    2022-11-13
  • C++超详细讲解智能指针
    目录一、内存泄漏-永恒的话题二、深度思考三、智能指针分析四、小结一、内存泄漏-永恒的话题 动态申请堆空间,用完后不归还C++ 语言中没有垃圾回收的机制指针无法控制所指堆空间的生命周期...
    99+
    2022-11-13
  • C++超详细讲解函数对象
    目录一、客户需求二、存在的问题三、解决方案四、函数对象五、小结一、客户需求 编写一个函数 函数可以获得斐波那契数列每项的值每调用一次返回一个值函数可根据需要重复使用 下面来看第一个...
    99+
    2022-11-13
  • C++超详细讲解字符串类
    目录一、历史遗留问题二、解决方案三、标准库中的字符串类四、字符串循环右移五、小结一、历史遗留问题 C 语言不支持真正意义上的字符串C 语言用字符数组和一组函数实现字符串操作C 语言不...
    99+
    2022-11-13
  • C++超详细讲解函数重载
    目录1 函数重载的定义2 构成函数重载的条件3 编译器调用重载函数的准则4 函数重载的注意事项4.1 避开重载带有指定默认值参数的函数4.2 注意函数重载遇上函数指针4.3 C++编...
    99+
    2022-11-13
  • C语言超详细讲解线性表
    目录1. 顺序表1.1 管理结点1.2 顺序表的插入1.3 顺序表的删除1.4 顺序表的扩容2. 链表2.1 定义2.2 头部插入2.3 尾部插入2.4 任意位置插入2.5 任意位置...
    99+
    2022-11-13
  • C++超详细讲解运算符重载
    目录概念赋值运算符重载const成员取地址及const取地址操作符重载概念 C++为了增强代码的可读性引入了运算符重载,运算符重载是具有特殊函数名的函数,也具有其返回值类 型,函数名...
    99+
    2022-11-13
  • C++BoostLockfree超详细讲解使用方法
    目录一、说明二、示例和代码Boost.Lockfree 一、说明 Boost.Lockfree 提供线程安全和无锁容器。可以从多个线程访问此库中的容器,而无需同步访问。 在 1.56...
    99+
    2022-11-21
    C++ Boost Lockfree C++ Lockfree方案
  • C语言超详细讲解库函数
    目录1 返回整数的getchar函数2 更新顺序文件3 缓冲输出与内存分配4 库函数练习1 返回整数的getchar函数 代码: #include<stdio.h> ...
    99+
    2022-11-13
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作