广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C语言超详细i讲解双向链表
  • 862
分享到

C语言超详细i讲解双向链表

2024-04-02 19:04:59 862人浏览 八月长安
摘要

目录一、双向链表的概念二、双向链表的实现三、链表与顺序表的差别四、链表oj总结一、双向链表的概念 1、概念:概念:双向链表是每个结点除后继指针外还有⼀个前驱指针。双向链表也有带头结点

一、双向链表的概念

1、概念:概念:双向链表是每个结点除后继指针外还有⼀个前驱指针。双向链表也有带头结点结构和不带头结点结构两种,带头结点的双向链表更为常用;另外,双向链表也可以有循环和非循环两种结构,循环结构的双向链表更为常用。

二、双向链表的实现

头文件List.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int LTDateType;
typedef struct Listnode
{
	LTDateType date;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;
//void ListInit(LTNode** pphead);
void ListPrint(LTNode* phead);
void ListPopBack(LTNode* phead);
LTNode* ListInit();//初始化
LTNode* BuyLTNode(LTDateType x);
void ListPushBack(LTNode* phead, LTDateType x);
void ListPushFront(LTNode* phead, LTDateType x);
void ListPopFront(LTNode* phead);
LTNode* ListFind(LTNode* phead, LTDateType x);
//在pos前插入
void ListInsert(LTNode* pos, LTDateType x);
//删除pos位置的节点
void ListErease(LTNode* pos);
void ListDestory(LTNode* phead);

源文件List.C

#include"List.h"
LTNode* BuyLTNode(LTDateType x)
{
	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
	if (newnode == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	newnode->date = x;
	newnode->next = NULL;
	newnode->prev = NULL;
	return newnode;
}
//void ListInit(LTNode** pphead)
//{
//	assert(pphead);
//	*pphead = BuyLTNode(0);
//	(*pphead)->next = *pphead;
//	(*pphead)->prev = *pphead;
//}
LTNode* ListInit()
{
	LTNode* phead = BuyLTNode(0);
	phead->next = phead;
	phead->prev = phead;
	return phead;
}
void ListPrint(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		printf("%d ", cur->date);
		cur = cur->next;
	}
	printf("\n");
}
void ListPushBack(LTNode* phead, LTDateType x)
{
	assert(phead);
	LTNode* tail = phead->prev;
	LTNode* newnode = BuyLTNode(x);
	tail->next = newnode;
	newnode->prev = tail;
	newnode->next = phead;
	phead->prev = newnode;
}
void ListPushFront(LTNode* phead, LTDateType x)
{
	assert(phead);
	ListInsert(phead->next, x);
}
void ListPopBack(LTNode* phead)//尾删
{
	assert(phead);
	assert(phead->next != phead);//说明传进来的不只有phead,不然phead被free掉了。
	//LTNode* tail = phead->prev;
	//LTNode* tailPrev = tail->prev;
	//free(tail);
	//tail = NULL;
	//tailPrev->next = phead;
	//phead->prev = tailPrev;
	ListErease(phead->prev);
}
void ListPopFront(LTNode* phead)//头删
{
	assert(phead);
	assert(phead->next != phead);
	ListErease(phead->next);
}
LTNode* ListFind(LTNode* phead, LTDateType x)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->date == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}
//void ListInsert(LTNode* pos, LTDateType x)
//{
//	assert(pos);
//	LTNode* newnode = BuyLTNode(x);
//	pos->prev->next = newnode;
//	newnode->prev = pos->prev;
//
//	pos->prev = newnode;
//	newnode->next = pos;
//
//}
//更好的写法
void ListInsert(LTNode* pos, LTDateType x)
{
	assert(pos);
	//无关写的顺序
	LTNode* newnode = BuyLTNode(x);
	LTNode* posPrev = pos->prev;
	newnode->next = pos;
	pos->prev = newnode;
	posPrev->next = newnode;
	newnode->prev = posPrev;
}
// 驼峰法
//函数和类型所以单词首字母大写
//变量:第一个单词小写后续单词首字母大写
void ListErease(LTNode* pos)
{
	assert(pos);
	LTNode* prev = pos->prev;
	LTNode* next = pos->next;
	free(pos);
	//此时要把pos置成空,不然pos就是野指针了
	pos = NULL;
	prev->next = next;//LT的新的prev指向pos->next;
	next->prev = prev;//LT的新的next的prev指向prev;
}
void ListDestory(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;//从头结点的下一个位置开始。
	while (cur != phead)
	{
		LTNode* next = cur->next;//先记录,再free
		//ListErease(cur);//副用Erease函数实现destory
		free(cur);//
		cur = next;
	}
	free(phead);
	//phead = NULL;形参的改变不影响实参
}

三、链表与顺序表的差别

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定连 续
随机访问支持O(1)不支持:O(N)
任意位置插入或者删除元 素可能需要搬移元素,效率低O(N)只需修改指针指向
插入动态顺序表,空间不够时需要扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

四、链表oj

1、链表中倒数第k个结点_牛客题霸_牛客网(链接)

思路:快慢指针法,fast先走k步, slow和fast同时走, fast走到尾时,slow就是倒数第k个

代码示例:

struct ListNode* FindKthToTail(struct ListNode* pListHead, int k ) {
    struct ListNode* slow, *fast;
    slow = fast = pListHead;
    while(k --)//走k步
    {
        //判断K是否大于链表的长度。
        if(fast == NULL) return NULL;
        fast = fast->next;
    }
    while(fast)//当fast 指针走到尾时
    {
        slow = slow->next;
        fast = fast->next;
    }
    return slow;
}
第二种写法:
struct ListNode* FindKthToTail(struct ListNode* pListHead, int k )
{
    struct ListNode* p1 = NULL, *p2 = NULL;
    p1 = pListHead;
    p2 = pListHead;
    int a = k;
    int c = 0;//记录节点个数
      //p1指针先跑,并且记录节点数,当p1指针跑了k-1个节点后,p2指针开始跑,
        //当p1指针跑到最后时,p2所指指针就是倒数第k个节点
    while(p1)//当p1 不为空时
    {
        p1 = p1->next;
        c ++;//节点个数增加
        if(k < 1) p2 = p2->next;
        k --;    
    }
    if(c < a) return NULL;
    return p2;
}

2、21. 合并两个有序链表(链接)

思路:归并的思想,将小的值尾插到新链表。时间复杂度为n^2;如果再定义一个尾指针, 每次记录尾。

struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2)
{
    if(list1 == NULL)//list1和list2分别是两个链表的头指针
        return list2;
    if(list2 == NULL)
        return list1;
    struct ListNode* head = NULL, *tail = NULL;//head是新链表的头指针,tail是新链表的尾指针
    while(list1 && list2)
    {
            if(list1->val < list2->val)
            {
                if(tail == NULL)//这一步不太理解
                {
                    head = tail = list1;
                }
                else
                {
                    tail->next = list1;//先传指针指向
                    tail = list1;//再把list 的地址传给tail,相当于tail往前挪了一步。
                }
                list1 = list1->next;
            }
            else
            {
                if(tail == NULL)
                {
                    head = tail = list2;
                }
                else
                {
                    tail->next = list2;
                    tail = list2;//传地址
                }
                 list2 = list2->next;
            }
    }
    if(list1)
    {
        tail->next = list1;//如果链表1不为空,而此时链表二为空,则直接把链表二的值连接过去就好了。
    }
    if(list2)
    {
        tail->next = list2;
    }
    return head;
}
//方法二:设置一个哨兵位头结点
//head存随机值, head->next存第一个链表的值。起到简化代码的作用。
//一般的链表没有设置哨兵位头结点。
struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2)
{
    struct ListNode* head = NULL, *tail = NULL;
    head = tail = (struct ListNode*)malloc(sizeof(struct ListNode));
    head->next = NULL;
    while(list1 && list2)
    {
            if(list1->val < list2->val)
            {
                    tail->next = list1;//先传指针指向
                    tail = list1;//再把list 的地址传给tail,相当于tail往前挪了一步。
                list1 = list1->next;
            }
            else
            {
                    tail->next = list2;
                    tail = list2;//传地址
                    list2 = list2->next;
            }
    }
    if(list1)
    {
        tail->next = list1;//如果链表1不为空,而此时链表二为空,则直接把链表二的值连接过去就好了。
    }
    if(list2)
    {
        tail->next = list2;
    }
    //解决内存泄漏问题;
    struct ListNode* list = head->next;
    free(head);
    return list;
}

3、链表分割_牛客题霸_牛客网(链接)

思路:新设置两个链表,小于x的插到第一个链表,大于x的插到第二个链表。

定义四个指针:Lesshead, LessTail,GreatHead, GreatTail.

原链表的值分别尾插到这两个链表, 然后分别更新LessTail,和GreatTail;

最后LessTail的指针再指向GreatHead。完成两个链表的连接。

想极端场景:

1、所有值比x小

2、所有值比x大

3、比x大和小都有,最后一个值是比x小

4、比x大和小都有,最后一个值是比x大

//构成环链表,造成死循环。
//设置哨兵位
class Partition {
  public:
    ListNode* partition(ListNode* pHead, int x) {
        struct ListNode* lessHead, *lessTail, *greatHead, *greatTail;
        lessHead = lessTail = (struct ListNode*)malloc(sizeof(struct ListNode));
        greatHead = greatTail = (struct ListNode*)malloc(sizeof(struct ListNode));
        lessTail->next = greatTail->next = NULL;
        struct ListNode* cur = pHead;
        while (cur) {
            if (cur->val < x) {
                lessTail->next = cur;
                lessTail = lessTail->next;
            } else {
                greatTail->next = cur;
                greatTail = greatTail->next;
            }
            cur = cur->next;
        }
        //完成链接工作
        lessTail->next = greatHead->next;
        greatTail->next = NULL;//切断greetTail的最后与greetHead的链接
        struct ListNode* list = lessHead->next;
        free(lessHead);
        free(greatHead);
        return list;
    }
};

4、链表的回文结构_牛客题霸_牛客网(链接)

思路:找出链表的中间节点, 然后逆置,判断前后链表是否一致,若一致,则说明该链表是回文结构。

为什么奇数个时也能过,

例如:1 2 3 2 1

逆置完变为了 1 2 1 2 3 ;

当A走到2的位置时2->next = 3, rHead走到的 2->next = 3, 相等。

class PalindromeList {
public:
    struct ListNode* middleNode(struct ListNode* head)
{
    struct ListNode* slow, * fast;
    slow = fast = head;
    while(fast && fast->next) //想的是结束的条件,写的是继续的条件
    {
        slow = slow->next;
        fast = fast->next->next;
    }
    return slow;
}
    struct ListNode* reverseList(struct ListNode* head)
{
    struct ListNode* NewHead = NULL;
    struct ListNode* cur = head;
    while(cur)
    {
        struct ListNode* next = cur->next;
        //头插
        cur->next = NewHead;//更多代表链表的指向方向。
        NewHead = cur;//接着把地址传过来(更新)
        cur = next;//(更新)
    }
    return NewHead;
    }
    bool chkPalindrome(ListNode* A) {
        struct ListNode* mid = middleNode(A);
        struct ListNode*rHead = reverseList(mid);//应该逆置mid,中间结点。
        while(A && rHead)
        {
            if(A->val == rHead->val)
            {
                A = A->next;
                rHead = rHead->next;
            }
            else
            {
                return false;
            }
        }
        return true;
    }
};

5、力扣相交链表(链接)

思路1:A链表每个节点B跟链表依次比较,如果有相等,就是相交,第一个相等就是交点。

时间复杂度:o(N*M);

思路二:如果两个链表相交,则这两个链表的最后一个元素的地址相同。

包含思路二三:

代码示例:

struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) 
{
    struct ListNode* tailA, *tailB;//因为之后还要用到headA,和headB,所以要用tail来进行迭代。
    tailA = headA, tailB = headB;
    int lenA = 1, lenB = 1;
    while(tailA)//求出A的尾
    {
        tailA = tailA->next;
        ++lenA;//求出A的长度
    }   
    while(tailB)//求出链表B的尾
    {
        tailB = tailB->next;
        ++lenB;//求出B的长度
    }
    if(tailA != tailB)//如果两个链表的尾不相等,则返回空
    {
        return NULL;
    }
    //相交,求交点,长的先走差距步,再同时找交点。
    struct ListNode* shortList = headA, *longList = headB;//默认A短B长
    if(lenA > lenB)
    {
        shortList = headB;
        longList = headA;
    }
    int gap = abs(lenA - lenB);//求出差距
    while(gap--)//减gap次,若是--gap,就是减了gap - 1次
    {
        longList = longList->next;
    }
    while(shortList && longList)
    {
        if(shortList == longList)
        return shortList;//此时shortList == longList;
        longList = longList->next;
        shortList = shortList->next;
    }
    //最最关键的一步:就是要在外面返回一个值,因为编译器不会判断代码在哪返回,只会检查你的代码的语法问题。
    return NULL;
}

总结

本文分别从双向链表的概念、实现,还比较了顺序表和链表的区别,以及5道链表oj题四个方面介绍了链表进阶的知识,希望大家读后能够有所收获。

到此这篇关于C语言超详细i讲解双向链表的文章就介绍到这了,更多相关C语言双向链表内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C语言超详细i讲解双向链表

本文链接: https://www.lsjlt.com/news/149800.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C语言超详细i讲解双向链表
    目录一、双向链表的概念二、双向链表的实现三、链表与顺序表的差别四、链表oj总结一、双向链表的概念 1、概念:概念:双向链表是每个结点除后继指针外还有⼀个前驱指针。双向链表也有带头结点...
    99+
    2022-11-13
  • C语言超详细讲解双向带头循环链表
    目录一、双向带头循环链表的结构二、双向带头循环链表的函数接口1. 申请结点2. 初识化3. 打印4. 尾插尾删5. 头插头删6. 查找7. 中间插入和删除8. 判空及求链表长度9. ...
    99+
    2023-02-14
    C语言双向带头循环链表 C语言带头循环链表 C语言循环链表
  • C语言数据结构超详细讲解单向链表
    目录1.链表概况1.1 链表的概念及结构1.2 链表的分类2. 单向链表的实现2.1 SList.h(头文件的汇总,函数的声明)2.2 SList.c(函数的具体实现逻辑)2.2.1...
    99+
    2022-11-13
  • C语言超详细讲解数据结构中双向带头循环链表
    目录一、概念二、必备工作2.1、创建双向链表结构2.2、初始化链表2.3、动态申请节点2.4、打印链表2.5、销毁链表三、主要功能3.1、在pos节点前插入数据尾插头插3.2、删除p...
    99+
    2022-11-13
  • C语言 超详细讲解链接器
    目录1 什么是链接器2 声明与定义3 命名冲突3.1 命名冲突3.2 static修饰符4 形参、实参、返回值5 检查外部类型6 头文件1 什么是链接器 典型的链接器把由编译器或汇编...
    99+
    2022-11-13
  • C语言类的双向链表详解
    目录前言双向链表的定义双向链表的创建节点的创建双向链表节点查找双向链表的插入双向链表的节点删除双向链表的删除总结前言 链表(linked list)是一种这样的数据结构,其中的各对象...
    99+
    2022-11-12
  • C语言超详细讲解线性表
    目录1. 顺序表1.1 管理结点1.2 顺序表的插入1.3 顺序表的删除1.4 顺序表的扩容2. 链表2.1 定义2.2 头部插入2.3 尾部插入2.4 任意位置插入2.5 任意位置...
    99+
    2022-11-13
  • C++带头双向循环链表超详细解析
    目录什么是带头双向循环链表带头双向循环链表常用接口实现上期我们讲完了无头单向非循环链表,这期我们接着来讲链表中结构最复杂的带头双向循环链表! 本期主要内容: 什么是带头双向循环链表...
    99+
    2022-11-13
  • C语言哈希表概念超详细讲解
    目录1. 哈希概念2. 哈希冲突3. 哈希实现3.1 闭散列(哈希表)3.1.1 闭散列的细节3.1.2 优化后的闭散列3.2 扩散列(哈希桶)3.2.1 扩散列的细节4. 哈希表和...
    99+
    2023-02-09
    C语言哈希表 C语言哈希概念 C语言哈希实现
  • C语言超详细讲解指向函数的指针
    目录一、函数的指针二、指向函数的指针变量三、调用函数的两种方式四、指向函数的指针的作用五、用指向函数的指针作函数参数(重点)六、为什么要将指向函数的指针变量作为函数的形参(重点)一、...
    99+
    2022-11-13
  • C语言算法学习之双向链表详解
    目录一、练习题目二、算法思路1、设计浏览器历史记录2、扁平化多级双向链表3、展平多级双向链表4、二叉搜索树与双向链表一、练习题目 题目链接难度1472. 设计浏览器历史记录★★★☆☆...
    99+
    2022-11-13
  • C++超详细讲解单链表的实现
    目录单链表的实现(从入门到熟练)概念和结构链表的实现增删查改接口节点结构体创建节点开辟数据打印链表尾插数据头删链表数据查找链表pos位置前插数据链表pos位置后插数据链表pos位置数...
    99+
    2022-11-13
  • C语言超详细讲解库函数
    目录1 返回整数的getchar函数2 更新顺序文件3 缓冲输出与内存分配4 库函数练习1 返回整数的getchar函数 代码: #include<stdio.h> ...
    99+
    2022-11-13
  • C语言数组超详细讲解上
    目录前言1、一维数组的创建和初始化1.1 一维数组的创建1.2 一维数组的初始化1.3 一维数组的使用1.4 一维数组在内存中的存储2、二维数组的创建和初始化2.1 二维数组的创建2...
    99+
    2022-11-13
  • C语言结构体超详细讲解
    目录前言1、结构体的声明1.1 结构的基础知识1.2 结构的声明1.3 结构成员的类型1.4 结构体变量的定义和初始化2、结构体成员的访问2.1 点操作符访问2.2 ->操作符...
    99+
    2022-11-13
  • C语言超详细介绍与实现线性表中的带头双向循环链表
    目录一、本章重点二、带头双向循环链表介绍2.1什么是带头双向循环链表?2.2最常用的两种链表结构三、带头双向循环链表常用接口实现 3.1结构体创建3.2带头双向循环链表的初始化 3....
    99+
    2022-11-13
  • 详解C语言中双向循环链表的实现
    目录实现细节辅助理解图具体实现代码1、对链表进行初始化2、任意位置前的插入3、任意位置的删除4、头插和尾删完整代码头文件具体函数测试实现细节 1、带一个哨兵位(哨兵节点,初始节点,不...
    99+
    2022-11-13
  • C++ 数据结构超详细讲解单链表
    目录前言一、链表是什么链表的分类二、链表的实现总结(❁´◡`❁) 单链表 前言 上篇顺序表结尾了解了顺序表的诸多缺点,链表的特性很好的解决了这些问题,本期我们来认识单链表...
    99+
    2022-11-13
  • C语言线性表之双链表详解
    目录定义1.删除2.插入3.建立4.查找总结定义 链表是通过一组任意的存储单元来存储线性表中的数据元素,每一个结点包含两个域:存放数据元素信息的域称为数据域,存放其后继元素地址的域称...
    99+
    2022-11-13
  • C语言如何实现双向链表和双向循环链表
    本文小编为大家详细介绍“C语言如何实现双向链表和双向循环链表”,内容详细,步骤清晰,细节处理妥当,希望这篇“C语言如何实现双向链表和双向循环链表”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。双向链表和双向循环链表...
    99+
    2023-06-16
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作