广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >OpenCV图像处理之图像拼接详解
  • 526
分享到

OpenCV图像处理之图像拼接详解

摘要

目录图像拼接技术一、需求分析二、具体步骤三、代码实现图像拼接技术 一、需求分析 将下面两张图像进行拼接 拼接得到一张完整的图像 二、具体步骤 1.选择特征点 //1、选

图像拼接技术

一、需求分析

将下面两张图像进行拼接

拼接得到一张完整的图像

二、具体步骤

1.选择特征点

    //1、选择特征点
    //左图 右图 识别特征点 是Mat对象 用c d保存
    surf->detectAndCompute(left,Mat(),key2,d);
    surf->detectAndCompute(right,Mat(),key1,c);
 
    //特征点对比,保存   特征点为中心点区域比对
    vector<DMatch> matches;
    matcher.match(d,c,matches);
 
    //排序从小到大 找到特征点连线
    sort(matches.begin(),matches.end());

2.保存最优的特征点对象

    //2、保存最优的特征点对象
    vector<DMatch>Good_matches;
    int ptrpoint = std::min(50,(int)(matches.size()*0.15));
    for (int i = 0;i < ptrpoint;i++)
    {
        good_matches.push_back(matches[i]);
    }
 
    //2-1、画线 最优的特征点对象连线
    Mat outimg;
    drawMatches(left,key2,right,key1,good_matches,outimg,
                Scalar::all(-1),Scalar::all(-1),
                vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
 
    //imshow("outimg",outimg);

3.特征点匹配

    //3、特征点匹配
    vector<Point2f>imagepoint1,imagepoint2;
    for (int i= 0 ;i < good_matches.size();i++)
    {
        //查找特征点可连接处                          变形
        imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
        //查找特征点可连接处                          查找基准线
        imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
    }

4.透视转换 图像融合

    //4、透视转换 图形融合
    Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);
    //imshow("homo",homo);
 
    //根据透视转换矩阵进行计算 四个坐标
    CalcCorners(homo,right);
 
    //接收透视转换结果
    Mat imageTransFORM;
    //透视转换
    warpPerspective(right,imageTransForm,homo,
                    Size(MAX(corners.right_top.x,corners.right_bottom.x),left.rows));
 
    //右图透视变换 由于本次图片材料是自己截图拼接的 因此看不出透视变换的明显特征
    //imshow("imageTransForm",imageTransForm);
 
    //结果进行整合
    int dst_width = imageTransForm.cols;
    int dst_height = left.rows;
 
    Mat dst(dst_height,dst_width,CV_8UC3);
    dst.setTo(0);
 
    imageTransForm.copyTo(dst(Rect(0,0,imageTransForm.cols,imageTransForm.rows)));
    left.copyTo(dst(Rect(0,0,left.cols,left.rows)));

右图的透视转换,由于图像材料是自己截图拼接的,因此看不出透视变换的明显特征,但根据上图可知已经做出透视变换图像处理操作

左图与右图的透视转换结果 拼接 【这里只是将窗口移动测试看下前面步骤是否正确】

可以看出左图与右图的透视转换结果 是可以进行接下来的图像融合操作的

5.优化图像 进行最终的结果展示

    //5、优化图像
    OptimizeSeam(left,imageTransForm,dst);
 
    //最终图像拼接结果
    imshow("dst",dst);

可以看出 顺利完成 两张图像拼接的图像处理操作 

三、代码实现

#include <iOStream>
#include <OpenCV2/opencv.hpp>
#include <opencv2/highgui.hpp>//图像融合
#include <opencv2/xfeatures2d.hpp>//拼接算法
#include <opencv2/calib3D.hpp>
#include <opencv2/imgproc.hpp>
 
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
 
typedef struct
{
    Point2f left_top;
    Point2f left_bottom;
    Point2f right_top;
    Point2f right_bottom;
}four_corners_t;
 
four_corners_t corners;
 
void CalcCorners(const Mat& H, const Mat& src)
{
    double v2[] = { 0, 0, 1 };//左上角
    double v1[3];//变换后的坐标值
    Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 
    V1 = H * V2;
    //左上角(0,0,1)
    cout << "V2: " << V2 << endl;
    cout << "V1: " << V1 << endl;
    corners.left_top.x = v1[0] / v1[2];
    corners.left_top.y = v1[1] / v1[2];
 
    //左下角(0,src.rows,1)
    v2[0] = 0;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.left_bottom.x = v1[0] / v1[2];
    corners.left_bottom.y = v1[1] / v1[2];
 
    //右上角(src.cols,0,1)
    v2[0] = src.cols;
    v2[1] = 0;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.right_top.x = v1[0] / v1[2];
    corners.right_top.y = v1[1] / v1[2];
 
    //右下角(src.cols,src.rows,1)
    v2[0] = src.cols;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.right_bottom.x = v1[0] / v1[2];
    corners.right_bottom.y = v1[1] / v1[2];
 
}
 
//图像融合的去裂缝处理操作
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
    int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界
 
    double processWidth = img1.cols - start;//重叠区域的宽度
    int rows = dst.rows;
    int cols = img1.cols; //注意,是列数*通道数
    double alpha = 1;//img1中像素的权重
    for (int i = 0; i < rows; i++)
    {
        uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
        uchar* t = trans.ptr<uchar>(i);
        uchar* d = dst.ptr<uchar>(i);
        for (int j = start; j < cols; j++)
        {
            //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
            if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
            {
                alpha = 1;
            }
            else
            {
                //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
                alpha = (processWidth - (j - start)) / processWidth;
            }
 
            d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
            d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
            d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
 
        }
    }
}
 
int main()
{
    //左图
    Mat left = imread("D:/00000000000003jieduanshipincailliao/a1.png");
    //右图
    Mat right = imread("D:/00000000000003jieduanshipincailliao/a2.png");
 
    //左右图显示
    imshow("left",left);
    imshow("right",right);
 
    //创建SURF对象
    Ptr<SURF> surf;
    //create 函数参数 海森矩阵阀值 800特征点以内
    surf = SURF::create(800);
 
    //创建一个暴力匹配器 用于特征点匹配
    BFMatcher matcher;
 
    //特征点容器 存放特征点KeyPoint
    vector<KeyPoint>key1,key2;
    //保存特征点
    Mat c,d;
 
    //1、选择特征点
    //左图 右图 识别特征点 是Mat对象 用c d保存
    surf->detectAndCompute(left,Mat(),key2,d);
    surf->detectAndCompute(right,Mat(),key1,c);
 
    //特征点对比,保存   特征点为中心点区域比对
    vector<DMatch> matches;
    matcher.match(d,c,matches);
 
    //排序从小到大 找到特征点连线
    sort(matches.begin(),matches.end());
 
    //2、保存最优的特征点对象
    vector<DMatch>good_matches;
    int ptrpoint = std::min(50,(int)(matches.size()*0.15));
    for (int i = 0;i < ptrpoint;i++)
    {
        good_matches.push_back(matches[i]);
    }
 
    //2-1、画线 最优的特征点对象连线
    Mat outimg;
    drawMatches(left,key2,right,key1,good_matches,outimg,
                Scalar::all(-1),Scalar::all(-1),
                vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
 
    //imshow("outimg",outimg);
 
    //3、特征点匹配
    vector<Point2f>imagepoint1,imagepoint2;
    for (int i= 0 ;i < good_matches.size();i++)
    {
        //查找特征点可连接处                          变形
        imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
        //查找特征点可连接处                          查找基准线
        imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
    }
 
    //4、透视转换 图形融合
    Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);
    //imshow("homo",homo);
 
    //根据透视转换矩阵进行计算 四个坐标
    CalcCorners(homo,right);
 
    //接收透视转换结果
    Mat imageTransForm;
    //透视转换
    warpPerspective(right,imageTransForm,homo,
                    Size(MAX(corners.right_top.x,corners.right_bottom.x),left.rows));
 
    //右图透视变换 由于本次图片材料是自己截图拼接的 因此看不出透视变换的明显特征
    //imshow("imageTransForm",imageTransForm);
 
    //结果进行整合
    int dst_width = imageTransForm.cols;
    int dst_height = left.rows;
 
    Mat dst(dst_height,dst_width,CV_8UC3);
    dst.setTo(0);
 
    imageTransForm.copyTo(dst(Rect(0,0,imageTransForm.cols,imageTransForm.rows)));
    left.copyTo(dst(Rect(0,0,left.cols,left.rows)));
 
    //5、优化图像
    OptimizeSeam(left,imageTransForm,dst);
 
    //最终图像拼接结果
    imshow("dst",dst);
 
    waiTKEy(0);
 
    return 0;
}

到此这篇关于OpenCV图像处理之图像拼接详解的文章就介绍到这了,更多相关OpenCV图像拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: OpenCV图像处理之图像拼接详解

本文链接: https://www.lsjlt.com/news/171713.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • OpenCV图像处理之图像拼接详解
    目录图像拼接技术一、需求分析二、具体步骤三、代码实现图像拼接技术 一、需求分析 将下面两张图像进行拼接 拼接得到一张完整的图像 二、具体步骤 1.选择特征点 //1、选...
    99+
    2022-11-13
    OpenCV 图像处理 图像拼接 OpenCV 图像拼接 OpenCV 图像处理
  • Python图像处理之图像拼接
    目录一、前言二、特征点匹配三、匹配错误的特征点干扰四、消除干扰五、RANSAC进行图像匹配六、总结一、前言 图像拼接技术就是将数张有重叠部分的图像(可能是不同时间、不同视角或者不同传...
    99+
    2022-11-12
  • Opencv图像处理之详解掩膜mask
    1.在OpenCV中我们经常会遇到一个名字:Mask(掩膜)。很多函数都使用到它,那么这个Mask到底什么呢? 2.如果我们想要裁剪图像中任意形状的区域时,应该怎么办呢? 答案是,...
    99+
    2022-11-11
  • C++OpenCV实战之图像全景拼接
    目录前言一、OpenCV Stitcher1.功能源码2.效果二、图像全景拼接1.特征检测2.计算单应性矩阵3.透视变换4.图像拼接5.功能源码6.效果三、源码总结前言 本文将使用O...
    99+
    2022-11-12
  • OpenCV 图像拼接和图像融合的实现
    目录基于SURF的图像拼接1.特征点提取和匹配2.图像配准3. 图像拷贝4.图像融合(去裂缝处理)基于ORB的图像拼接opencv自带的拼接算法stitch1.opencv stit...
    99+
    2022-11-12
  • opencv实践项目之图像拼接详细步骤
    目录1.简介2. 步骤2.1 特征检测与提取2.2 关键点检测2.3 关键点和描述符2.4 特征匹配2.5 比率测试2.6 估计单应性3. 完整代码总结1.简介 图像拼接是计算机视觉...
    99+
    2023-05-19
    opencv图像拼接代码 opencv 拼图 opencv实现图像拼接
  • OpenCV数字图像处理基于C++之图像形态学处理详解
    目录1、图像腐蚀1.1 CV腐蚀函数1.2 自定义腐蚀函数1.3 对比2、图像膨胀2.1 CV膨胀函数2.2 自定义膨胀函数2.3 对比3、开运算3.1 方法一3.2 方法二4、闭运...
    99+
    2022-12-08
    数字图像处理 opencv 基于opencv的图像处理 opencv c++入门
  • Python图像处理之图像量化处理详解
    目录一.图像量化处理原理二.图像量化实现三.图像量化等级对比四.K-Means聚类实现量化处理五.总结一.图像量化处理原理 量化(Quantization)旨在将图像像素点对应亮度的...
    99+
    2022-11-13
  • OpenCV实现图像拼接案例
    目录一、penCV图像特征采集二、OpenCV 特征提取算法三、OpenCV特征提取 四、OpenCV特征取精五、OpenCV透视转换一、penCV图像特征采集 特征提取:...
    99+
    2022-11-13
    OpenCV实现图像拼接 OpenCV图像拼接
  • OpenCV图像处理之直方图比较方法详解
    目录一、直方图比较二、图像直方图比较方法三、代码实现四、图像处理效果一、直方图比较 直方图比较是对输入的两张图像进行计算得到直方图H1与H2,归一化到相同的尺度空间,然后可以通过计算...
    99+
    2022-11-13
  • 详解C++ OpenCV实现图像拼接的原理及方法
    目录前言一、图像拼接相关原理 图像特征采集特征提取算法透视变换透视矩阵图像拷贝二、案例实现Step1:导入目标图片Step2:特征点提取和匹配 Step3:图像配...
    99+
    2022-11-13
  • Python图像处理之图像金字塔详解
    目录一.图像金字塔原理二.图像向上取样三.图像向下取样四.总结一.图像金字塔原理 上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和...
    99+
    2022-11-13
  • OpenCV实战之图像拼接的示例代码
    目录背景实现步骤一、读取文件二、单应性矩阵计算三、图像拼接总结背景 图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片; 实现步骤 1、读文件并缩放图片大小...
    99+
    2022-11-12
  • opencv-python基本图像处理详解
    目录一、使用matplotlib显示图1、显示热量图 2、显示灰度图二、使用cv.imread显示图像1、显示灰度图像总结一、使用matplotlib显示图 impor...
    99+
    2022-11-12
  • OpenCV图像处理GUI功能详解
    目录一、图像入门1.读取图像2.显示图像3.保存图像二、视频入门1.用相机捕捉视频2.播放视频文件3.保存视频总结OpenCV图像处理 一、图像入门 1.读取图像 使用 cv.im...
    99+
    2022-11-13
  • Python+OpenCV之图像梯度详解
    目录1. Sobel算子1.1 Sobel介绍1.2 横向Sobel算子1.3 纵向Sobel算子1.4 合并横纵向的方法提取更好的边缘的结果1.5 利用1.3方法绘制素描风格2. ...
    99+
    2022-11-11
  • Python+OpenCV之图像轮廓详解
    目录1. 图像轮廓1.1 findContours介绍1.2 绘制轮廓1.3 轮廓特征2. 轮廓近似2.1 轮廓2.2 边界矩形2.3 外界多边形及面积1. 图像轮廓 1.1 fin...
    99+
    2022-11-11
  • Java OpenCV图像处理之SIFT角点检测详解
    目录介绍示例代码效果图补充介绍 在某些情况下对图像进行缩放后,角点信息可能会丢失,这时候Harri便不能检测到所有的角点。SIFT(scale-invariant feature t...
    99+
    2022-11-13
  • PythonOpenCV图像处理之图像滤波特效详解
    目录1 分类2 邻域滤波2.1 线性滤波2.2 非线性滤波3 频域滤波3.1 低通滤波3.2 高通滤波1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domai...
    99+
    2022-11-13
  • Python图像处理之图像增广算法详解
    目录前言图像增广算法a.图像旋转b.图像亮度调整c.图像裁剪及拼接本章小结前言 图像增广算法在计算机视觉领域扮演着至关重要的角色。随着深度学习的兴起,大规模数据集的需求变得更加迫切,...
    99+
    2023-05-20
    Python图像增广算法 Python图像处理 Python 算法
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作