广告
返回顶部
首页 > 资讯 > 后端开发 > Python >device-mapper 块级重删(d
  • 211
分享到

device-mapper 块级重删(d

devicemapper块级重删 2023-01-31 01:01:11 211人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

五、代码结构(3) I/O写流程 上一篇我们来介绍了dm dedup的空间管理这一篇我们介绍核心流程I/O写流程 要看的特别清楚这部分的内容,需要结合我之前写过的《device-mapper 块级重删(dm dedup) <2>

五、代码结构(3) I/O写流程

上一篇我们来介绍了dm dedup的空间管理
这一篇我们介绍核心流程I/O写流程

device-mapper 块级重删(dm dedup) <3>代码结构(3)

要看的特别清楚这部分的内容,需要结合我之前写过的《device-mapper 块级重删(dm dedup) <2>设计》请添加链接描述一起学习

在块级重删 设计那一篇已经描述了这一系列的过程。
上一篇代码结构已经对kvs_hash和kvs_lbn的lookup和insert有了分析。
接下来我们来看看lookup和insert在写流程中的使用。

首先我们先看一下alloc_pbn_block给lbn的函数,后面都会用用到。


            【
                            
                    static int alloc_pbnblk_and_insert_lbn_pbn(struct dedup_config *dc,
                                                     u64 *pbn_new,
                                                     struct bio *bio, uint64_t lbn)
                        {
                            int r = 0;
                            struct lbn_pbn_value lbnpbn_value;

                            r = allocate_block(dc, pbn_new);

                            lbnpbn_value.pbn = *pbn_new;
                            do_io(dc, bio, *pbn_new); 

                            r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
                                            sizeof(lbn), (void *)&lbnpbn_value,
                                            sizeof(lbnpbn_value));
                            
                            return r;
                    }
             】

1、no hash && no lbn
即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn
-> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。
没有找到pbn ->③ handle_write_no_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在
没有找到lbn -> ④ handle_write_no_hash.[__handle_no_lbn_pbn] //这里到了最终处理函数
这里为了减少篇章,去掉了资源申请错误处理和资源访问错误处理

static int __handle_no_lbn_pbn(struct dedup_config *dc,
                   struct bio *bio, uint64_t lbn, u8 *hash)
{
    int r, ret;
    u64 pbn_new;
    struct hash_pbn_value hashpbn_value;

    
    r = alloc_pbnblk_and_insert_lbn_pbn(dc, &pbn_new, bio, lbn);

    

    hashpbn_value.pbn = pbn_new;
    r = dc->kvs_hash_pbn->kvs_insert(dc->kvs_hash_pbn, (void *)hash,
                     dc->crypto_key_size,
                     (void *)&hashpbn_value,
                     sizeof(hashpbn_value));

    
    r = dc->mdops->inc_refcount(dc->bmd, pbn_new);

    
    dc->newwrites++;
    Goto out;


inc_refcount_err:
    
    ret = dc->kvs_hash_pbn->kvs_delete(dc->kvs_hash_pbn,
                       (void *)hash, dc->crypto_key_size);

kvs_insert_err:
    
    ret = dc->kvs_lbn_pbn->kvs_delete(dc->kvs_lbn_pbn,
                      (void *)&lbn, sizeof(lbn));

    ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

out:
    return r;
}

2、no hash && has lbn
即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn
-> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。
没有找到pbn ->③ handle_write_no_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在
找到lbn -> ④ handle_write_no_hash.[__handle_has_lbn_pbn] //这里到了最终处理函数

static int __handle_has_lbn_pbn(struct dedup_config *dc,
                struct bio *bio, uint64_t lbn, u8 *hash,
                u64 pbn_old)
{
    int r, ret;
    u64 pbn_new;
    struct hash_pbn_value hashpbn_value;

    
    r = alloc_pbnblk_and_insert_lbn_pbn(dc, &pbn_new, bio, lbn);

    
    hashpbn_value.pbn = pbn_new;
    r = dc->kvs_hash_pbn->kvs_insert(dc->kvs_hash_pbn, (void *)hash,
                     dc->crypto_key_size,
                     (void *)&hashpbn_value,
                     sizeof(hashpbn_value));

    
    r = dc->mdops->inc_refcount(dc->bmd, pbn_new);
    
    
    r = dc->mdops->dec_refcount(dc->bmd, pbn_old);

    dc->logical_block_counter--;

    
    dc->overwrites++;  
    goto out;


dec_refcount_err:
    
    ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

inc_refcount_err:
    ret = dc->kvs_hash_pbn->kvs_delete(dc->kvs_hash_pbn, (void *)hash,
                       dc->crypto_key_size);

kvs_insert_err:
    
    ret = dc->kvs_lbn_pbn->kvs_delete(dc->kvs_lbn_pbn, (void *)&lbn,
                      sizeof(lbn));

    ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

out:
    return r;
}

3、hash && no lbn
即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn
-> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。
找到pbn ->③ handle_write_with_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在
没有找到lbn -> ④ handle_write_no_hash.[__handle_no_lbn_pbn_with_hash] //这里到了最终处理函数
既然找到了hash_pbn,就是pbn可以复用的,直接将lbn将pbn关联就行

static int __handle_no_lbn_pbn_with_hash(struct dedup_config *dc,
                     struct bio *bio, uint64_t lbn,
                     u64 pbn_this,
                     struct lbn_pbn_value lbnpbn_value)
{
    int r = 0, ret;

    
    r = dc->mdops->inc_refcount(dc->bmd, pbn_this);
    if (r < 0)
        goto out;

    lbnpbn_value.pbn = pbn_this;

    
    r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
                    sizeof(lbn), (void *)&lbnpbn_value,
                    sizeof(lbnpbn_value));
    if (r < 0)
        goto kvs_insert_error;

    dc->logical_block_counter++;

    bio->bi_status = BLK_STS_OK;
    bio_endio(bio);
    
    dc->newwrites++;
    goto out;

kvs_insert_error:
    
    ret = dc->mdops->dec_refcount(dc->bmd, pbn_this);

out:
    return r;
}

4、hash && lbn
即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn
-> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。
找到pbn ->③ handle_write_with_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在
找到lbn -> ④ handle_write_no_hash.[__handle_has_lbn_pbn_with_hash] //这里到了最终处理函数
既然找到了hash_pbn和lbn_pbn,这里存在了两种情况:
一、overwrite,也就是hash_pbn的pbn和lbn_pbn是一个。
二、No relationship,也就是这是将一个pbn的内容写到一个新的lbn位置

static int __handle_has_lbn_pbn_with_hash(struct dedup_config *dc,
                      struct bio *bio, uint64_t lbn,
                      u64 pbn_this,
                      struct lbn_pbn_value lbnpbn_value)
{
    int r = 0, ret;
    struct lbn_pbn_value this_lbnpbn_value;
    u64 pbn_old;

    pbn_old = lbnpbn_value.pbn;

    
    if (pbn_this == pbn_old)
        goto out;

  
    
    r = dc->mdops->inc_refcount(dc->bmd, pbn_this);
    if (r < 0)
        goto out;

    this_lbnpbn_value.pbn = pbn_this;

    
    r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
                    sizeof(lbn),
                    (void *)&this_lbnpbn_value,
                    sizeof(this_lbnpbn_value));
    if (r < 0)
        goto kvs_insert_err;

  
    
    r = dc->mdops->dec_refcount(dc->bmd, pbn_old);
    if (r < 0)
        goto dec_refcount_err;

    goto out;   

dec_refcount_err:
    
    
    ret = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
                          sizeof(lbn), (void *)&lbnpbn_value,
                      sizeof(lbnpbn_value));
    if (ret < 0)
        DMERR("Error in overwriting lbn->pbn_this [%llu] with"
              " lbn-pbn_old entry [%llu].", this_lbnpbn_value.pbn,
              lbnpbn_value.pbn);

kvs_insert_err:
    ret = dc->mdops->dec_refcount(dc->bmd, pbn_this);
    if (ret < 0)
        DMERR("Error in decrementing previously incremented refcount.");
out:
    if (r == 0) {
        bio->bi_status = BLK_STS_OK;
        bio_endio(bio);
        dc->overwrites++;
    }

    return r;
}

这一篇介绍了,写流程的四种情况,更加清晰了解释了dm dedup设计一文中的流程图。
希望读者看完后,能够对dm dedup这种简单逻辑的方式所吸引,从而喜欢上块重删这个技术。

--------------未完待续--------------

【本文只在51cto博客作者 “底层存储技术” https://blog.51cto.com/12580077 个人发布,公众号发布:存储之谷】,如需转载,请于本人联系,谢谢。

--结束END--

本文标题: device-mapper 块级重删(d

本文链接: https://www.lsjlt.com/news/183738.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • device-mapper 块级重删(d
    五、代码结构(3) I/O写流程 上一篇我们来介绍了dm dedup的空间管理这一篇我们介绍核心流程I/O写流程 要看的特别清楚这部分的内容,需要结合我之前写过的《device-mapper 块级重删(dm dedup) <2>...
    99+
    2023-01-31
    device mapper 块级重删
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作