iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >Python3使用tracemalloc实现追踪mmap内存变化
  • 233
分享到

Python3使用tracemalloc实现追踪mmap内存变化

Python 官方文档:入门教程 => 点击学习

摘要

目录技术背景用tracemalloc跟踪python程序内存占用用tracemalloc追踪内存变化内存占用曲线mmap内存占用测试将numpy数组写入txt文件numpy文件读取测

技术背景

在前面一篇博客中我们介绍了一些用python3处理表格数据的方法,其中重点包含了vaex这样一个大规模数据处理的方案。这个数据处理的方案是基于内存映射(memory map)的技术,通过创建内存映射文件来避免在内存中直接加载源数据而导致的大规模内存占用问题,这使得我们可以在本地电脑内存规模并不是很大的条件下对大规模的数据进行处理。Python3中提供了mmap这样一个仓库,可以直接创建内存映射文件。

用tracemalloc跟踪python程序内存占用

这里我们希望能够对比内存映射技术的实际内存占用,因此我们需要引入一个基于python的内存追踪工具:tracemalloc。我们先看一个简单的案例,创建一个随机数组,观察这个数组的内存占用大小:

# tracem.py
 
import tracemalloc
import numpy as np
tracemalloc.start()
 
length=10000
test_array=np.random.randn(length) # 分配一个定长随机数组
snapshot=tracemalloc.take_snapshot() # 内存摄像
top_stats=snapshot.statistics('lineno') # 内存占用数据获取
 
print ('[Top 10]')
for stat in top_stats[:10]: # 打印占用内存最大的10个子进程
    print (stat)

输出结果如下:

[dechin@dechin-manjaro mmap]$ python3 tracem.py 
[Top 10]
tracem.py:8: size=78.2 KiB, count=2, average=39.1 KiB

假如我们是使用top指令来直接检测内存的话,毫无疑问占比内存最高的还是谷歌浏览器:

top - 10:04:08 up 6 days, 15:18,  5 users,  load average: 0.23, 0.33, 0.27
任务: 309 total,   1 running, 264 sleeping,  23 stopped,  21 zombie
%Cpu(s):  0.6 us,  0.2 sy,  0.0 ni, 99.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
MiB Mem :  39913.6 total,  25450.8 free,   1875.7 used,  12587.1 buff/cache
MiB Swap:  16384.0 total,  16384.0 free,      0.0 used.  36775.8 avail Mem 
 
 进程号 USER      PR  NI    VIRT    RES    SHR    %CPU  %MEM     TIME+ COMMAND               
 286734 dechin    20   0   36.6g 175832 117544 S   4.0   0.4   1:02.32 chromium 

因此根据进程号来追踪子进程的内存占用才是使用tracemalloc的一个重点,这里我们发现一个10000大小的numpy矢量的内存占用约为39.1 KiB,这其实是符合我们的预期的:

In [3]: 39.1*1024/4
Out[3]: 10009.6

因为这几乎就是10000个float32浮点数的内存占用大小,这表明所有的元素都已经存储在内存中。

用tracemalloc追踪内存变化

在上面一个章节中我们介绍了snapshot内存快照的使用方法,那么我们很容易可以想到,通过“拍摄”两张内存快照,然后对比一下快照中的变化,不就可以得到内存变化的大小么?接下来做一个简单尝试:

# comp_tracem.py
 
import tracemalloc
import numpy as np
tracemalloc.start()
 
snapshot0=tracemalloc.take_snapshot() # 第一张快照
length=10000
test_array=np.random.randn(length)
snapshot1=tracemalloc.take_snapshot() # 第二张快照
top_stats=snapshot1.compare_to(snapshot0,'lineno') # 快照对比
 
print ('[Top 10 differences]')
for stat in top_stats[:10]:
    print (stat)

执行结果如下:

[dechin@dechin-manjaro mmap]$ python3 comp_tracem.py 
[Top 10 differences]
comp_tracem.py:9: size=78.2 KiB (+78.2 KiB), count=2 (+2), average=39.1 KiB

可以看到这个快照前后的平均内存大小差异就是在39.1 KiB,假如我们把矢量的维度改为1000000:

length=1000000

再执行一遍看看效果:

[dechin@dechin-manjaro mmap]$ python3 comp_tracem.py  
[Top 10 differences]
comp_tracem.py:9: size=7813 KiB (+7813 KiB), count=2 (+2), average=3906 KiB

我们发现结果是3906,相当于被放大了100倍,是比较符合预期的。当然如果我们仔细去算一下:

In [4]: 3906*1024/4
Out[4]: 999936.0

我们发现这里面并不完全是float32的类型,相比于完全的float32类型缺失了一部分内存大小,这里怀疑是否是中间产生了一些0,被自动的压缩了大小?不过这个问题并不是我们所要重点关注的,我们继续向下测试内存的变化曲线。

内存占用曲线

延续前面两个章节的内容,我们主要测试一下不同维度的随机数组所需要占用的内存空间,在上述代码模块的基础上增加了一个for循环:

# comp_tracem.py
 
import tracemalloc
import numpy as np
tracemalloc.start()
 
x=[]
y=[]
multiplier={'B':1,'KiB':1024,'MiB':1048576}
snapshot0=tracemalloc.take_snapshot()
for length in range(1,1000000,100000):
    np.random.seed(1)
    test_array=np.random.randn(length)
    snapshot1=tracemalloc.take_snapshot()
    top_stats=snapshot1.compare_to(snapshot0,'lineno')
    for stat in top_stats[:10]:
        if 'comp_tracem.py' in str(stat): # 判断是否属于当前文件所产生的内存占用
            x.append(length)
            mem=str(stat).split('average=')[1].split(' ')
            y.append(float(m曲线em[0])*multiplier[mem[1]])
            break
 
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y,'D',color='black',label='Experiment')
plt.plot(x,np.dot(x,4),color='red',label='Expect') # float32的预期占用空间
plt.title('Memery Difference vs Array Length')
plt.xlabel('Number Array Length')
plt.ylabel('Memory Difference')
plt.legend()
plt.savefig('comp_mem.png')

画出来的效果图如下所示:

这里我们又发现,虽然大部分情况下是符合内存占用预期的,但有很多个点比预期占用的要少,我们怀疑是因为存在0元素,因此稍微修改了一下代码,在原代码的基础上增加了一个操作来尽可能的避免0的出现:

# comp_tracem.py
 
import tracemalloc
import numpy as np
tracemalloc.start()
 
x=[]
y=[]
multiplier={'B':1,'KiB':1024,'MiB':1048576}
snapshot0=tracemalloc.take_snapshot()
for length in range(1,1000000,100000):
    np.random.seed(1)
    test_array=np.random.randn(length)
    test_array+=np.ones(length)*np.pi # 在原数组基础上加一个圆周率,内存不变
    snapshot1=tracemalloc.take_snapshot()
    top_stats=snapshot1.compare_to(snapshot0,'lineno')
    for stat in top_stats[:10]:
        if 'comp_tracem.py' in str(stat):
            x.append(length)
            mem=str(stat).split('average=')[1].split(' ')
            y.append(float(mem[0])*multiplier[mem[1]])
            break
 
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y,'D',color='black',label='Experiment')
plt.plot(x,np.dot(x,4),color='red',label='Expect')
plt.title('Memery Difference vs Array Length')
plt.xlabel('Number Array Length')
plt.ylabel('Memory Difference')
plt.legend()
plt.savefig('comp_mem.png')

经过更新后,得到的结果图如下所示:

虽然不符合预期的点数少了,但是这里还是有两个点不符合预期的内存占用大小,疑似数据被压缩了。

mmap内存占用测试

在上面几个章节之后,我们已经基本掌握了内存追踪技术的使用,这里我们将其应用在mmap内存映射技术上,看看有什么样的效果。

将numpy数组写入txt文件

因为内存映射本质上是一个对系统文件的读写操作,因此这里我们首先将前面用到的numpy数组存储到txt文件中:

# write_array.py
 
import numpy as np
 
x=[]
y=[]
for length in range(1,1000000,100000):
    np.random.seed(1)
    test_array=np.random.randn(length)
    test_array+=np.ones(length)*np.pi
    np.savetxt('numpy_array_length_'+str(length)+'.txt',test_array)

写入完成后,在当前目录下会生成一系列的txt文件:

-rw-r--r-- 1 dechin dechin  2500119  4月 12 10:09 numpy_array_length_100001.txt
-rw-r--r-- 1 dechin dechin       25  4月 12 10:09 numpy_array_length_1.txt
-rw-r--r-- 1 dechin dechin  5000203  4月 12 10:09 numpy_array_length_200001.txt
-rw-r--r-- 1 dechin dechin  7500290  4月 12 10:09 numpy_array_length_300001.txt
-rw-r--r-- 1 dechin dechin 10000356  4月 12 10:09 numpy_array_length_400001.txt
-rw-r--r-- 1 dechin dechin 12500443  4月 12 10:09 numpy_array_length_500001.txt
-rw-r--r-- 1 dechin dechin 15000526  4月 12 10:09 numpy_array_length_600001.txt
-rw-r--r-- 1 dechin dechin 17500606  4月 12 10:09 numpy_array_length_700001.txt
-rw-r--r-- 1 dechin dechin 20000685  4月 12 10:09 numpy_array_length_800001.txt
-rw-r--r-- 1 dechin dechin 22500788  4月 12 10:09 numpy_array_length_900001.txt

我们可以用head或者tail查看前n个或者后n个的元素:

[dechin@dechin-manjaro mmap]$ head -n 5 numpy_array_length_100001.txt 
4.765938017253034786e+00
2.529836239939717846e+00
2.613420901326337642e+00
2.068624031433622612e+00
4.007000282914471967e+00

numpy文件读取测试

前面几个测试我们是直接在内存中生成的numpy的数组并进行内存监测,这里我们为了严格对比,统一采用文件读取的方式,首先我们需要看一下numpy的文件读取的内存曲线如何:

# npopen_tracem.py
 
import tracemalloc
import numpy as np
tracemalloc.start()
 
x=[]
y=[]
multiplier={'B':1,'KiB':1024,'MiB':1048576}
snapshot0=tracemalloc.take_snapshot()
for length in range(1,1000000,100000):
    test_array=np.loadtxt('numpy_array_length_'+str(length)+'.txt',delimiter=',')
    snapshot1=tracemalloc.take_snapshot()
    top_stats=snapshot1.compare_to(snapshot0,'lineno')
    for stat in top_stats[:10]:
        if '/home/dechin/anaconda3/lib/python3.8/site-packages/numpy/lib/npyio.py:1153' in str(stat):
            x.append(length)
            mem=str(stat).split('average=')[1].split(' ')
            y.append(float(mem[0])*multiplier[mem[1]])
            break
 
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y,'D',color='black',label='Experiment')
plt.plot(x,np.dot(x,8),color='red',label='Expect')
plt.title('Memery Difference vs Array Length')
plt.xlabel('Number Array Length')
plt.ylabel('Memory Difference')
plt.legend()
plt.savefig('open_mem.png')

需要注意的一点是,这里虽然还是使用numpy对文件进行读取,但是内存占用已经不是名为npopen_tracem.py的源文件了,而是被保存在了npyio.py:1153这个文件中,因此我们在进行内存跟踪的时候,需要调整一下对应的统计位置。最后的输出结果如下:

由于读入之后是默认以float64来读取的,因此预期的内存占用大小是元素数量×8,这里读入的数据内存占用是几乎完全符合预期的。

mmap内存占用测试

伏笔了一大篇幅的文章,最后终于到了内存映射技术的测试,其实内存映射模块mmap的使用方式倒也不难,就是配合os模块进行文件读取,基本上就是一行的代码:

# mmap_tracem.py
 
import tracemalloc
import numpy as np
import mmap
import os
tracemalloc.start()
 
x=[]
y=[]
multiplier={'B':1,'KiB':1024,'MiB':1048576}
snapshot0=tracemalloc.take_snapshot()
for length in range(1,1000000,100000):
    test_array=mmap.mmap(os.open('numpy_array_length_'+str(length)+'.txt',os.O_RDWR),0) # 创建内存映射文件
    snapshot1=tracemalloc.take_snapshot()
    top_stats=snapshot1.compare_to(snapshot0,'lineno')
    for stat in top_stats[:10]:
        print (stat)
        if 'mmap_tracem.py' in str(stat):
            x.append(length)
            mem=str(stat).split('average=')[1].split(' ')
            y.append(float(mem[0])*multiplier[mem[1]])
            break
 
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x,y,'D',color='black',label='Experiment')
plt.title('Memery Difference vs Array Length')
plt.xlabel('Number Array Length')
plt.ylabel('Memory Difference')
plt.legend()
plt.savefig('mmap.png')

运行结果如下:

我们可以看到内存上是几乎没有波动的,因为我们并未把整个数组加载到内存中,而是在内存中加载了其内存映射的文件。使得我们可以读取文件中的任何一个位置的byte,但是不用耗费太大的内存资源。当我们去修改写入文件的时候需要额外的小心,因为对于内存映射技术来说,byte数量是需要保持不变的,否则内存映射就会发生错误。

总结概要

本文介绍了用tracemalloc来进行python程序的内存追踪的技术,以及简单的文件映射技术mmap的使用方法介绍和演示。通过这些案例,我们了解到,对于小规模的计算场景,可以将整个的需要计算的元素包含在内存中,这比较方便也比较快速。而对于大规模的文件场景,还是使用内存映射技术更加的快速,这个速度在本文中介绍的几个案例的运行中也能够体会到。内存映射技术已经有很多应用场景,比如前面介绍过的vaex就是得益于内存映射技术。

到此这篇关于Python3使用tracemalloc实现追踪mmap内存变化的文章就介绍到这了,更多相关Python tracemalloc追踪mmap内存变化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python3使用tracemalloc实现追踪mmap内存变化

本文链接: https://www.lsjlt.com/news/199731.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • Python3使用tracemalloc实现追踪mmap内存变化
    目录技术背景用tracemalloc跟踪python程序内存占用用tracemalloc追踪内存变化内存占用曲线mmap内存占用测试将numpy数组写入txt文件numpy文件读取测...
    99+
    2023-03-14
    Python tracemalloc追踪mmap内存变化 Python追踪mmap内存变化 Python tracemalloc Python mmap
  • Python3怎么使用tracemalloc实现追踪mmap内存变化
    技术背景在前面一篇博客中我们介绍了一些用python3处理表格数据的方法,其中重点包含了vaex这样一个大规模数据处理的方案。这个数据处理的方案是基于内存映射(memory map)的技术,通过创建内存映射文件来避免在内存中直接加载源数据而...
    99+
    2023-05-21
    Python mmap
  • 使用log4j MDC实现日志追踪
    目录log4j MDC实现日志追踪1、新建线程处理类 ThreadContext2、添加工具类TraceUtil3、添加ContextFilter4、在webConfiguriati...
    99+
    2024-04-02
  • 如何使用 Git 追踪 ASP 函数和 Spring 项目的变化?
    Git 是一个流行的分布式版本控制系统,它可以帮助开发人员追踪代码的变化和管理代码库。在本文中,我们将探讨如何使用 Git 追踪 ASP 函数和 Spring 项目的变化。 Git 的基本概念 在开始之前,我们需要了解一些 Git 的基本概...
    99+
    2023-09-05
    函数 spring git
  • Python使用mmap如何实现内存映射文件操作
    这篇文章给大家分享的是有关Python使用mmap如何实现内存映射文件操作的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。说明 1)什么叫映射?   ==>就是给一个对象(可以是变量、物理等),起一个唯一的别...
    99+
    2023-06-15
  • 怎么在HTML5中使用Geolocation实现一个距离追踪器
    今天就跟大家聊聊有关怎么在HTML5中使用Geolocation实现一个距离追踪器,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。页面结构如下所示:<div id=&q...
    99+
    2023-06-09
  • python3使用迭代生成器实现减少内存占用
    技术背景 在python编码中for循环处理任务时,会将所有的待遍历参量加载到内存中。其实这本没有必要,因为这些参量很有可能是一次性使用的,甚至很多场景下这些参量是不需要同时存储在内...
    99+
    2024-04-02
  • 使用Java如何实现追加文件内容
    这篇文章将为大家详细讲解有关使用Java如何实现追加文件内容,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。整理文档,搜刮出一个Java追加文件内容的三种方法的代码,稍微整理精简一下做下分享。...
    99+
    2023-05-31
    java 文件追加 ava
  • 使用java如何实现向文件中追加内容
    使用java如何实现向文件中追加内容?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。java向文件中追加内容与读写文件内容源码实例代码向文件尾加入内容有多种方法,...
    99+
    2023-05-31
    java 追加内容 ava
  • 如何使用Python实现分布式系统中的二维码追踪功能?
    分布式系统中的二维码追踪功能是一个非常有用的功能,它可以让我们追踪二维码的使用情况,以便更好地管理和优化我们的业务。在本文中,我们将介绍如何使用Python实现分布式系统中的二维码追踪功能。 一、了解二维码追踪功能的原理 在分布式系统中,我...
    99+
    2023-10-02
    关键字 二维码 分布式
  • 如何使用MySQL设计仓库管理系统的表结构来跟踪库存变化?
    如何使用MySQL设计仓库管理系统的表结构来跟踪库存变化?介绍仓库管理系统是一个用来管理货物进出、库存变化的重要系统。在系统设计中,合理的表结构设计非常关键,能够有效地跟踪库存变化,确保数据的准确性和可靠性。本文将介绍如何使用MySQL来设...
    99+
    2023-10-31
    MySQL 表结构 仓库管理系统
  • Python使用Pillow实现图像基本变化
    目录一、图像处理1. 灰度图像2. 二值图像3. 索引图像4. RGB彩色图像5. 图像存储方式二、图像处理基础操作1.查看图片属性2. 显示RGB不同通道3.PGB和HSV的转换三...
    99+
    2024-04-02
  • redis 限制内存使用大小的实现
    记录一次生产环境问题排查过程: 生产环境部署方式:nginx + uwsgi + flask 问题描述: 发现生产环境中之前正常运行的服务突然不可用了,查看程序日志发现部分接口访问...
    99+
    2024-04-02
  • 怎么使用Go实现健壮的内存型缓存
    本篇内容介绍了“怎么使用Go实现健壮的内存型缓存”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!使用Go实现健壮的内存型缓存本文介绍了缓存的常...
    99+
    2023-06-30
  • 使用 C++ 函数的内存分配和销毁来实现内存池
    c++++ 函数的内存分配和销毁可用于实现内存池,从而提高性能。内存池预先分配内存块并重复使用,避免了频繁的系统分配和释放操作。可定义内存分配函数 poolallocate 和内存销毁函...
    99+
    2024-04-22
    c++ 内存池
  • 使用Go实现健壮的内存型缓存的方法
    目录使用Go实现健壮的内存型缓存由来Demo应用字节 VS 结构体Native 缓存并发更新后台更新同步过期缓存错误故障转移模式缓存传输锁竞争和底层性能内存管理基准测试开发者友好总结...
    99+
    2024-04-02
  • 怎么使用Shell脚本实现监测文件变化
    这篇文章主要讲解了“怎么使用Shell脚本实现监测文件变化”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Shell脚本实现监测文件变化”吧!代码完整的shell脚本如下,可以直接使用...
    99+
    2023-07-02
  • 如何使用Python实现实时监控数组文件变化?
    在日常的编程工作中,我们经常需要监控某些文件的变化,并且在文件发生变化时能够及时作出相应的处理。在本文中,我们将介绍如何使用Python实现实时监控数组文件变化,并且通过演示代码来帮助您更好地理解。 使用Python的watchdog模...
    99+
    2023-07-05
    实时 数组 文件
  • 内容全球化:使用 CMS 实现多语言网站
    随着互联网的快速发展,企业和组织正在全球范围内扩展他们的业务和受众。为了有效地与全球客户建立联系,提供多语言网站已成为一项必不可少的战略。内容管理系统 (CMS) 提供了一种简便且高效的方式来实现多语言网站,从而打破语言障碍并扩大您的覆...
    99+
    2024-03-05
    内容全球化、多语言网站、CMS、翻译、语言本地化
  • C语言内存函数的使用及其模拟实现
    目录前言memcpymemcmpmemmovememset总结前言 在C语言中,我们除了会经常用到与字符相关的函数,我们还会使用到与内存相关的库函数。今天我们就来学习几个常见的内存函...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作