返回顶部
首页 > 资讯 > 后端开发 > Python >八个流行的 Python 可视化工具包,你喜欢哪个?
  • 139
分享到

八个流行的 Python 可视化工具包,你喜欢哪个?

可视化工具Python 2023-05-14 21:05:57 139人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

大家好,我是python人工智能技术喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Py

八个流行的 Python 可视化工具包,你喜欢哪个?

大家好,我是python人工智能技术

喜欢用 Python项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中。快来试试你喜欢哪个?

用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个中庸的形象?

本文将介绍一些常用的 Python 可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章只扩展到 2D 图,为下一次讲 3D 图和商业报表(dashboard)留了一些空间,不过这次要讲的包中,许多都可以很好地支持 3D 图和商业报表。

Matplotlib、Seaborn 和 pandas

把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas 中的 df.plot() 时,用的其实是别人用 Matplotlib 写的代码。因此,这些图在美化方面是相似的,自定义图时用的语法也都非常相似。

当提到这些可视化工具时,我想到三个词:探索(Exploratory)、数据(Data)、分析(Analysis)。这些包都很适合第一次探索数据,但要做演示时用这些包就不够了。

Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。

Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相关工具所做的示例图:

在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。

import seaborn as sns
import matplotlib.pyplot as plt
color_order = ['xkcd:cerulean', 'xkcd:ocean',
 'xkcd:black','xkcd:royal purple',
 'xkcd:royal purple', 'xkcd:navy blue',
'xkcd:powder blue', 'xkcd:light maroon',
 'xkcd:lightish blue','xkcd:navy']
sns.barplot(x=top10.Team,
 y=top10.Salary,
 palette=color_order).set_title('Teams with Highest Median Salary')
plt.ticklabel_fORMat(style='sci', axis='y', scilimits=(0,0))

八个流行的 Python 可视化工具包,你喜欢哪个?

第二个图是回归实验残差的 Q-Q 图。这张图的主要目的是展示如何用尽量少的线条做出一张有用的图,当然也许它可能不那么美观。

import matplotlib.pyplot as plt
import scipy.stats as stats
#model2 is a regression model
log_resid = model2.predict(X_test)-y_test
stats.probplot(log_resid, dist="norm", plot=plt)
plt.title("Normal Q-Q plot")
plt.show()

八个流行的 Python 可视化工具包,你喜欢哪个?

最终证明,Matplotlib 及其相关工具的效率很高,但就演示而言它们并不是最好的工具。

ggplot(2)

你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。

在我看过的所有材料中,它的一切都和 ggplot2 很像,但这个包的好处是它依赖于 Pandas Python 包。不过 Pandas Python 包最近弃用了一些方法,导致 Python 版本不兼容。

如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。

也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。

ggplot2(我觉得也包括 Python 的 ggplot)举足轻重的原因是它们用「图形语法」来构建图片。基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。

下面是 ggplot 代码的简单示例。我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。另外,搜索公众号linux就该这样学后台回复“git书籍”,获取一份惊喜礼包。

#All Salaries
ggplot(data=df, aes(x=season_start, y=salary, colour=team)) +
 geom_point() +
 theme(legend.position="none") +
 labs(title = 'Salary Over Time', x='Year', y='Salary ($)')

八个流行的 Python 可视化工具包,你喜欢哪个?

Bokeh

Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:

import pandas as pd
from bokeh.plotting import figure
from bokeh.io import show
# is_masc is a one-hot encoded dataframe of responses to the question:
# "Do you identify as masculine?"
#Dataframe Prep
counts = is_masc.sum()
resps = is_masc.columns
#Bokeh
p2 = figure(title='Do You View Yourself As Masculine?',
 x_axis_label='Response',
 y_axis_label='Count',
 x_range=list(resps))
p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black')
show(p2)
#Pandas
counts.plot(kind='bar')

八个流行的 Python 可视化工具包,你喜欢哪个?

用 Bokeh 表示调查结果

红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。

我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。

八个流行的 Python 可视化工具包,你喜欢哪个?

用 Pandas 表示相同的数据

蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。

Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。

八个流行的 Python 可视化工具包,你喜欢哪个?

Bokeh 还是制作交互式商业报表的绝佳工具。

Plotly

Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:

  • 安装时要有 api 秘钥,还要注册,不是只用 pip 安装就可以;
  • Plotly 所绘制的数据和布局对象是独一无二的,但并不直观;
  • 图片布局对我来说没有用(40 行代码毫无意义!)

但它也有优点,而且设置中的所有缺点都有相应的解决方法:

  • 你可以在 Plotly 网站和 Python 环境中编辑图片;
  • 支持交互式图片和商业报表;
  • Plotly 与 Mapbox 合作,可以自定义地图;
  • 很有潜力绘制优秀图形。

以下是我针对这个包编写的代码:

#plot 1 - barplot
# **note** - the layout lines do nothing and trip no errors
data = [Go.Bar(x=team_ave_df.team,
 y=team_ave_df.turnovers_per_mp)]
layout = go.Layout(
 title=go.layout.Title(
 text='Turnovers per Minute by Team',
 xref='paper',
 x=0
 ),
 xaxis=go.layout.XAxis(
 title = go.layout.xaxis.Title(
 text='Team',
 font=dict(
 family='Courier New, monospace',
 size=18,
 color='#7f7f7f'
 )
 )
 ),
 yaxis=go.layout.YAxis(
 title = go.layout.yaxis.Title(
 text='Average Turnovers/Minute',
 font=dict(
 family='Courier New, monospace',
 size=18,
 color='#7f7f7f'
 )
 )
 ),
 autosize=True,
 hovermode='closest')
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite')
#plot 2 - attempt at a scatterplot
data = [go.Scatter(x=player_year.minutes_played,
 y=player_year.salary,
 marker=go.scatter.Marker(color='red',
 size=3))]
layout = go.Layout(title="test",
 xaxis=dict(title='why'),
 yaxis=dict(title='plotly'))
py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public')
[Image: image.png]

八个流行的 Python 可视化工具包,你喜欢哪个?

表示不同 NBA 球队每分钟平均失误数的条形图。

八个流行的 Python 可视化工具包,你喜欢哪个?

表示薪水和在 NBA 的打球时间之间关系的散点图

总体来说,开箱即用的美化工具看起来很好,但我多次尝试逐字复制文档和修改坐标轴标签时却失败了。但下面的图展示了 Plotly 的潜力,以及我为什么要在它身上花好几个小时:

八个流行的 Python 可视化工具包,你喜欢哪个?

Plotly 页面上的一些示例图

Pygal

Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。使用 Pygal 非常简单:

  • 实例化图片;
  • 用图片目标属性格式化;
  • 用 figure.add() 将数据添加到图片中。

我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。必须要用 render_to_file 选项,然后在 WEB 浏览器中打开文件,才能看见我刚刚构建的东西。

最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。

八个流行的 Python 可视化工具包,你喜欢哪个?

Networkx

虽然 Networkx 是基于 matplotlib 的,但它仍是图形分析和可视化的绝佳解决方案。图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。

八个流行的 Python 可视化工具包,你喜欢哪个?

我按编号(1~10)用颜色编码了每个节点,代码如下:

options = {
 'node_color' : range(len(G)),
 'node_size' : 300,
 'width' : 1,
 'with_labels' : False,
 'cmap' : plt.cm.coolwarm
}
nx.draw(G, **options)

八个流行的 Python 可视化工具包,你喜欢哪个?

用于可视化上面提到的稀疏 Facebook 图形的代码如下:

import itertools
import networkx as nx
import matplotlib.pyplot as plt
f = open('data/facebook/1684.circles', 'r')
circles = [line.split() for line in f]
f.close()
network = []
for circ in circles:
 cleaned = [int(val) for val in circ[1:]]
 network.append(cleaned)
G = nx.Graph()
for v in network:
 G.add_nodes_from(v)
edges = [itertools.combinations(net,2) for net in network]
for edge_group in edges:
 G.add_edges_from(edge_group)
options = {
 'node_color' : 'lime',
 'node_size' : 3,
 'width' : 1,
 'with_labels' : False,
}
nx.draw(G, **options)

八个流行的 Python 可视化工具包,你喜欢哪个?

这个图形非常稀疏,Networkx 通过最大化每个集群的间隔展现了这种稀疏化。

有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。

以上就是八个流行的 Python 可视化工具包,你喜欢哪个?的详细内容,更多请关注编程网其它相关文章!

--结束END--

本文标题: 八个流行的 Python 可视化工具包,你喜欢哪个?

本文链接: https://www.lsjlt.com/news/205363.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 八个流行的 Python 可视化工具包,你喜欢哪个?
    大家好,我是Python人工智能技术喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的。下面,作者介绍了八种在 Py...
    99+
    2023-05-14
    可视化 工具 Python
  • 受Python工程师喜欢的5个可视化工具分别是什么
    这期内容当中小编将会给大家带来有关受Python工程师喜欢的5个可视化工具分别是什么,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。如今,同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可...
    99+
    2023-06-02
  • 有哪些流行的Python可视化工具包
    这篇文章主要讲解了“有哪些流行的Python可视化工具包”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“有哪些流行的Python可视化工具包”吧!Matplotlib、Seaborn 和 Pa...
    99+
    2023-06-16
  • Python工程师最喜欢使用的数据可视化工具有哪些
    这篇文章将为大家详细讲解有关Python工程师最喜欢使用的数据可视化工具有哪些,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。灯果数据可视化(http://www.dengguobi.com/)灯果数据可视...
    99+
    2023-06-01
  • mysql可视化工具哪个好用
    mysql 可视化工具推荐:mysql workbench:官方推荐,功能全面,图形化界面友好。phpmyadmin:开源 web 界面工具,简单易用,适合初学者。heidisql:免费...
    99+
    2024-08-02
    mysql git phpmyadmin
  • Linux系统最受欢迎的10个可视化工具介绍
    这篇文章主要讲解了“Linux系统最受欢迎的10个可视化工具介绍”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Linux系统最受欢迎的10个可视化工具介绍”吧!1.MySQL Workben...
    99+
    2023-06-16
  • 这3个Python实时可视化工具包来帮你了解性能瓶颈
    前言 Python中的日志模块可用于跟踪代码的事件,并可用于确定代码崩溃的原因。有效地使用记录器还可以跟踪代码片段的时间复杂度。日志记录可能很有用,但它技术性太强,需要适当的实现。在...
    99+
    2024-04-02
  • mysql可视化工具哪个比较好用一点
    小编给大家分享一下mysql可视化工具哪个比较好用一点,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!MySQL可视化工具都各有各的优缺点,要根据自己的实际需求来选择比如phpMyAdmin它用...
    99+
    2024-04-02
  • Python必备的可视化工具有哪些
    这篇文章给大家分享的是有关Python必备的可视化工具有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。灯果可视化灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无...
    99+
    2023-06-02
  • ASP、大数据、Spring、NumPy:哪个工具可为你提供最佳的数据可视化效果?
    数据可视化是现代数据科学中的核心概念之一。随着互联网技术的发展,越来越多的工具和技术被用于数据可视化领域。本文将讨论四种主要的工具:ASP、大数据、Spring、NumPy,来探讨哪个工具可为你提供最佳的数据可视化效果。 ASP(Activ...
    99+
    2023-07-25
    大数据 spring numy
  • Python工程师常用的可视化工具有哪些
    小编给大家分享一下Python工程师常用的可视化工具有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!灯果数据可视化灯果数据可视化BI软件是新一代人工智能数据可...
    99+
    2023-06-02
  • 5个常用的大数据可视化分析工具
    1. Tableau:Tableau是一款强大的数据可视化工具,可以帮助用户创建交互式和动态的图表、地图和仪表板。它支持多种数据源,...
    99+
    2023-09-22
    大数据
  • mplfinance 一个堪称完美python量化金融可视化工具详析
    文章目录 1.mplfinance安装2.获取数据(从tushare接口)3. 获取数据(从本地csv)4. mplfinance可视化5. 自定义风格样式6. 添加其他线条 1.mpl...
    99+
    2023-09-11
    python 金融 mplfinance 人工智能 量化金融
  • 简化Django开发的八个Python包分别是哪些
    简化Django开发的八个Python包分别是哪些,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。这个月的 Python 专栏将介绍一些 Django 包,它们有...
    99+
    2023-06-17
  • Python工程师最常用到的可视化工具有哪些
    这篇文章主要为大家展示了“Python工程师最常用到的可视化工具有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python工程师最常用到的可视化工具有哪些”这篇文章吧。灯果数据可视化灯果数...
    99+
    2023-06-02
  • Python可视化最频繁使用的工具有哪些
    这篇“Python可视化最频繁使用的工具有哪些”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python可视化最频繁使用的工...
    99+
    2023-07-05
  • 怎样用一个开源工具实现多线程 Python 程序的可视化
    今天就跟大家聊聊有关怎样用一个开源工具实现多线程 Python 程序的可视化,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。VizTracer 可以跟踪并发的 Python 程序,以帮...
    99+
    2023-06-15
  • 【Java可执行命令】(十八)可视化监控和管理工具 jconsole:获取 JVM的内存使用情况、线程活动、GC 行为等重要指标的可视化工具 ~
    Java可执行命令之jconsole 1️⃣ 概念2️⃣ 优势和缺点3️⃣ 使用3.1 语法格式3.2 注意事项 4️⃣ 应用场景🌾 总结 1️⃣ 概念 jc...
    99+
    2023-09-30
    java jvm 开发语言 经验分享 java-ee
  • 超级好用的4个Python命令行可视化库
    Python命令行可视化库 ① 使用Bashplotlib在命令行中绘图 如果你想在命令行窗口中绘制数据的情况,那么Bashplotlib是非常适合的。  首先安装Bash...
    99+
    2024-04-02
  • Python工程师喜爱的5款数据可视化bi软件分别是哪些
    Python工程师喜爱的5款数据可视化bi软件分别是哪些,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。 1、灯果数据可视化灯果数...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作