iis服务器助手广告广告
返回顶部
首页 > 资讯 > 精选 >Apache Tomcat怎么高并发处理请求
  • 691
分享到

Apache Tomcat怎么高并发处理请求

2023-06-29 17:06:49 691人浏览 独家记忆
摘要

这篇文章给大家分享的是有关Apache Tomcat怎么高并发处理请求的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。介绍作为常用的Http协议服务器,tomcat应用非常广泛。tomcat也是遵循Ser

这篇文章给大家分享的是有关Apache Tomcat怎么高并发处理请求的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

介绍

作为常用的Http协议服务器tomcat应用非常广泛。tomcat也是遵循Servelt协议的,Servelt协议可以让服务器与真实服务逻辑代码进行解耦。各自只需要关注Servlet协议即可。
对于tomcat是如何作为一个高性能的服务器的呢?你是不是也会有这样的疑问?

tomcat是如何接收网络请求?

如何做到高性能的http协议服务器?

tomcat从8.0往后开始使用了NIO非阻塞io模型,提高了吞吐量,本文的源码是tomcat 9.0.48版本

接收Socket请求

org.apache.tomcat.util.net.Acceptor实现了Runnable接口,在一个单独的线程中以死循环的方式一直进行socket的监听

线程的初始化及启动是在方法org.apache.tomcat.util.net.AbstractEndpoint#startAcceptorThread

有个很重要的属性org.apache.tomcat.util.net.AbstractEndpoint;同时实现了run方法,方法中主要有以下功能:

  • 请求最大连接数限制: 最大为 8*1024;请你注意到达最大连接数后操作系统底层还是会接收客户端连接,但用户层已经不再接收

  • 获取socketChannel

public void run() {        int errorDelay = 0;        try {            // Loop until we receive a shutdown command            while (!stopCalled) {...                if (stopCalled) {                    break;                }                state = AcceptorState.RUNNING;                try {                    //if we have reached max connections, wait                    // 如果连接超过了 8*1024,则线程阻塞等待; 是使用org.apache.tomcat.util.threads.LimitLatch类实现了分享(内部实现了AbstractQueuedSynchronizer)                    // 请你注意到达最大连接数后操作系统底层还是会接收客户端连接,但用户层已经不再接收。                    endpoint.countUpOrAwaitConnection();                    // Endpoint might have been paused while waiting for latch                    // If that is the case, don't accept new connections                    if (endpoint.isPaused()) {                        continue;                    }                    U socket = null;                    try {                        // Accept the next incoming connection from the server                        // socket                        // 抽象方法,不同的endPoint有不同的实现方法。NioEndPoint为例,实现方法为serverSock.accept(),这个方法主要看serverSock实例化时如果为阻塞,accept方法为阻塞;反之为立即返回,如果没有socket链接,则为null                        socket = endpoint.serverSocketAccept();                    } catch (Exception ioe) {                        // We didn't get a socket                        endpoint.countDownConnection();                        if (endpoint.isRunning()) {                            // Introduce delay if necessary                            errorDelay = handleExceptionWithDelay(errorDelay);                            // re-throw                            throw ioe;                        } else {                            break;                        }                    }                    // Successful accept, reset the error delay                    errorDelay = 0;                    // Configure the socket                    if (!stopCalled && !endpoint.isPaused()) {                        // setSocketOptions() will hand the socket off to                        // an appropriate processor if successful                        // endPoint类的抽象方法,不同的endPoint有不同的实现。处理获取到的socketChannel链接,如果该socket链接能正常处理,那么该方法会返回true,否则为false                        if (!endpoint.setSocketOptions(socket)) {                            endpoint.closeSocket(socket);                        }                    } else {                        endpoint.destroySocket(socket);                    }                } catch (Throwable t) {                    ...                }            }        } finally {            stopLatch.countDown();        }        state = AcceptorState.ENDED;    }

再来看下org.apache.tomcat.util.net.NioEndpoint#setSocketOptions方法的具体实现(NioEndpoint为例)

这个方法中主要做的事:

  • 创建Niochannel

  • 设置socket为非阻塞

  • 将socket添加到Poller的队列中

 protected boolean setSocketOptions(SocketChannel socket) {        NiOSocketWrapper socketWrapper = null;        try {            // Allocate channel and wrapper            // 优先使用已有的缓存nioChannel            NioChannel channel = null;            if (nioChannels != null) {                channel = nioChannels.pop();            }            if (channel == null) {                SocketBufferHandler bufhandler = new SocketBufferHandler(                        socketProperties.getAppReadBufSize(),                        socketProperties.getAppWriteBufSize(),                        socketProperties.getDirectBuffer());                if (isSSLEnabled()) {                    channel = new SecureNioChannel(bufhandler, this);                } else {                    channel = new NioChannel(bufhandler);                }            }            // 将nioEndpoint与NioChannel进行包装            NioSocketWrapper newWrapper = new NioSocketWrapper(channel, this);            channel.reset(socket, newWrapper);            connections.put(socket, newWrapper);            socketWrapper = newWrapper;            // Set socket properties            // Disable blocking, polling will be used            // 设置当前链接的socket为非阻塞            socket.configureBlocking(false);            if (getUnixDomainSocketPath() == null) {                socketProperties.setProperties(socket.socket());            }            socketWrapper.setReadTimeout(getConnectionTimeout());            socketWrapper.setWriteTimeout(getConnectionTimeout());            socketWrapper.seTKEepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());            // 将包装后的nioChannel与nioEndpoint进行注册,注册到Poller,将对应的socket包装类添加到Poller的队列中,同时唤醒selector            poller.reGISter(socketWrapper);            return true;        } catch (Throwable t) {            ExceptionUtils.handleThrowable(t);            try {                log.error(sm.getString("endpoint.socketOptionsError"), t);            } catch (Throwable tt) {                ExceptionUtils.handleThrowable(tt);            }            if (socketWrapper == null) {                destroySocket(socket);            }        }        // Tell to close the socket if needed        return false;    }

Socket请求轮询

上一小节是接收到了socket请求,进行包装之后,将socket添加到了Poller的队列上,并可能唤醒了Selector,本小节就来看看,Poller是如何进行socket的轮询的。

首先org.apache.tomcat.util.net.NioEndpoint.Poller也是实现了Runnable接口,是一个可以单独启动的线程

初始化及启动是在org.apache.tomcat.util.net.NioEndpoint#startInternal

重要的属性:

  • java.nio.channels.Selector:在Poller对象初始化的时候,就会启动轮询器

  • SynchronizedQueue<PollerEvent>:同步的事件队列

再来看下具体处理逻辑,run方法的源码

public void run() {            // Loop until destroy() is called            while (true) {                boolean hasEvents = false;                try {                    if (!close) {                        // 去SynchronizedQueue事件队列中拉去,看是否已经有了事件,如果有,则返回true                        // 如果从队列中拉取到了event(即上一步将NioSocketWrapper封装为PollerEvent添加到次队列中),将socketChannel注册到Selector上,标记为SelectionKey.OP_READ,添加处理函数attachment(为Accetpor添加到Poller时的                            // NioSocketWrapper)                        hasEvents = events();                        if (wakeupCounter.getAndSet(-1) > 0) {                            // If we are here, means we have other stuff to do                            // Do a non blocking select                            keyCount = selector.selectNow();                        } else {                            keyCount = selector.select(selectorTimeout);                        }                        wakeupCounter.set(0);                    }                    if (close) {                        events();                        timeout(0, false);                        try {                            selector.close();                        } catch (IOException ioe) {                            log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe);                        }                        break;                    }                    // Either we timed out or we woke up, process events first                    if (keyCount == 0) {                        hasEvents = (hasEvents | events());                    }                } catch (Throwable x) {                    ExceptionUtils.handleThrowable(x);                    log.error(sm.getString("endpoint.nio.selectorLoopError"), x);                    continue;                }                Iterator<SelectionKey> iterator =                    keyCount > 0 ? selector.selectedKeys().iterator() : null;                // Walk through the collection of ready keys and dispatch                // any active event.                // selector轮询获取已经注册的事件,如果有事件准备好,此时通过selectKeys方法就能拿到对应的事件                while (iterator != null && iterator.hasNext()) {                    SelectionKey sk = iterator.next();                    // 获取到事件后,从迭代器删除事件,防止事件重复轮询                    iterator.remove();                    // 获取事件的处理器,这个attachment是在event()方法中注册的,后续这个事件的处理,就交给这个wrapper去处理                    NioSocketWrapper socketWrapper = (NioSocketWrapper) sk.attachment();                    // Attachment may be null if another thread has called                    // cancelledKey()                    if (socketWrapper != null) {                        processKey(sk, socketWrapper);                    }                }                // Process timeouts                timeout(keyCount,hasEvents);            }            getStopLatch().countDown();        }

在这里,有一个很重要的方法,org.apache.tomcat.util.net.NioEndpoint.Poller#events(),他是从Poller的事件队列中获取Acceptor接收到的可用socket,并将其注册到Selector

        public boolean events() {            boolean result = false;            PollerEvent pe = null;            // 如果Acceptor将socket添加到队列中,那么events.poll()方法就能拿到对应的事件,否则拿不到就返回false            for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++ ) {                result = true;                NioSocketWrapper socketWrapper = pe.getSocketWrapper();                SocketChannel sc = socketWrapper.getSocket().getIOChannel();                int interestOps = pe.getInterestOps();                if (sc == null) {                    log.warn(sm.getString("endpoint.nio.nullSocketChannel"));                    socketWrapper.close();                } else if (interestOps == OP_REGISTER) {                    // 如果是Acceptor刚添加到队列中的事件,那么此时的ops就是OP_REGISTER                    try {,                        // 将次socket注册到selector上,标记为OP_READ事件,添加事件触发时处理函数socketWrapper                        sc.register(getSelector(), SelectionKey.OP_READ, socketWrapper);                    } catch (Exception x) {                        log.error(sm.getString("endpoint.nio.registerFail"), x);                    }                } else {                    // ??这里的逻辑,不清楚什么情况下会进入到这个分支里面                    final SelectionKey key = sc.keyFor(getSelector());                    if (key == null) {                        // The key was cancelled (e.g. due to socket closure)                        // and removed from the selector while it was being                        // processed. Count down the connections at this point                        // since it won't have been counted down when the socket                        // closed.                        socketWrapper.close();                    } else {                        final NioSocketWrapper attachment = (NioSocketWrapper) key.attachment();                        if (attachment != null) {                            // We are registering the key to start with, reset the fairness counter.                            try {                                int ops = key.interestOps() | interestOps;                                attachment.interestOps(ops);                                key.interestOps(ops);                            } catch (CancelledKeyException ckx) {                                cancelledKey(key, socketWrapper);                            }                        } else {                            cancelledKey(key, socketWrapper);                        }                    }                }                if (running && !paused && eventCache != null) {                    pe.reset();                    eventCache.push(pe);                }            }            return result;        }

还有一个重要方法就是org.apache.tomcat.util.net.NioEndpoint.Poller#processKey,上一个方法是获取event,并注册到selector,那这个方法就是通过Selector获取到的数据准备好的event,并开始封装成对应的业务处理线程SocketProcessorBase,扔到线程池里开始处理

protected void processKey(SelectionKey sk, NioSocketWrapper socketWrapper) {            try {                if (close) {                    cancelledKey(sk, socketWrapper);                } else if (sk.isValid()) {                    if (sk.isReadable() || sk.isWritable()) {                        if (socketWrapper.getSendfileData() != null) {                            processSendfile(sk, socketWrapper, false);                        } else {                            unreg(sk, socketWrapper, sk.readyOps());                            boolean closeSocket = false;                            // Read Goes before write                            if (sk.isReadable()) {                                //这里如果是异步的操作,就会走这里                                if (socketWrapper.readOperation != null) {                                    if (!socketWrapper.readOperation.process()) {                                        closeSocket = true;                                    }                                } else if (socketWrapper.readBlocking) {                                    // readBlocking默认为false                                    synchronized (socketWrapper.readLock) {                                        socketWrapper.readBlocking = false;                                        socketWrapper.readLock.notify();                                    }                                } else if (!processSocket(socketWrapper, SocketEvent.OPEN_READ, true)) {                                    // 处理正常的事件,这里的processSocket就要正式开始处理请求了。                                    // 将对应的事件封装成对应的线程,然后交给线程池去处理正式的请求业务                                    closeSocket = true;                                }                            }                            if (!closeSocket && sk.isWritable()) {                                if (socketWrapper.writeOperation != null) {                                    if (!socketWrapper.writeOperation.process()) {                                        closeSocket = true;                                    }                                } else if (socketWrapper.writeBlocking) {                                    synchronized (socketWrapper.writeLock) {                                        socketWrapper.writeBlocking = false;                                        socketWrapper.writeLock.notify();                                    }                                } else if (!processSocket(socketWrapper, SocketEvent.OPEN_WRITE, true)) {                                    closeSocket = true;                                }                            }                            if (closeSocket) {                                cancelledKey(sk, socketWrapper);                            }                        }                    }                } else {                    // Invalid key                    cancelledKey(sk, socketWrapper);                }            } catch (CancelledKeyException ckx) {                cancelledKey(sk, socketWrapper);            } catch (Throwable t) {                ExceptionUtils.handleThrowable(t);                log.error(sm.getString("endpoint.nio.keyProcessingError"), t);            }        }

请求具体处理

上一步,Selector获取到了就绪的请求socket,然后根据socket注册的触发处理函数等,将这些数据进行封装,扔到了线程池里,开始具体的业务逻辑处理。本节就是从工作线程封装开始,org.apache.tomcat.util.net.SocketProcessorBase为工作线程类的抽象类,实现了Runnable接口,不同的Endpoint实现具体的处理逻辑,本节以NioEndpoint为例

以下为org.apache.tomcat.util.net.AbstractEndpoint#processSocket方法源码

        public boolean processSocket(SocketWrapperBase<S> socketWrapper,            SocketEvent event, boolean dispatch) {        try {            if (socketWrapper == null) {                return false;            }            // 优先使用已经存在的线程            SocketProcessorBase<S> sc = null;            if (processorCache != null) {                sc = processorCache.pop();            }            if (sc == null) {                sc = createSocketProcessor(socketWrapper, event);            } else {                sc.reset(socketWrapper, event);            }            // 获取线程池。线程池的初始化,是在Acceptor、Poller这两个单独线程启动之前创建            // tomcat使用了自定义的org.apache.tomcat.util.threads.TaskQueue,这块tomcat也进行了小的适配开发            // 核心线程为10个,最大200线程            Executor executor = getExecutor();            if (dispatch && executor != null) {                executor.execute(sc);            } else {                sc.run();            }        } catch (RejectedExecutionException ree) {            getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree);            return false;        } catch (Throwable t) {            ExceptionUtils.handleThrowable(t);            // This means we got an OOM or similar creating a thread, or that            // the pool and its queue are full            getLog().error(sm.getString("endpoint.process.fail"), t);            return false;        }        return true;    }

上面的方法是得到了处理业务逻辑的线程SocketProcessorBase,NioEndpoint内部类org.apache.tomcat.util.net.NioEndpoint.SocketProcessor继承了这个抽象类,也就是具体的业务处理逻辑在org.apache.tomcat.util.net.NioEndpoint.SocketProcessor#doRun方法中,最终调用到我们的Servlet

        protected void doRun() {                        Poller poller = NioEndpoint.this.poller;            if (poller == null) {                socketWrapper.close();                return;            }            try {                int handshake = -1;                try {                    // 握手相关判断逻辑                   ...                 } catch (IOException x) {                  ...                }                // 三次握手成功了                if (handshake == 0) {                    SocketState state = SocketState.OPEN;                    // Process the request from this socket                    // event为SocketEvent.OPEN_READ,这个变量是org.apache.tomcat.util.net.NioEndpoint.Poller#processKey方法赋值                    if (event == null) {                        state = getHandler().process(socketWrapper, SocketEvent.OPEN_READ);                    } else {                        // 这里就开始正式处理请求了                        state = getHandler().process(socketWrapper, event);                    }                    if (state == SocketState.CLOSED) {                        poller.cancelledKey(getSelectionKey(), socketWrapper);                    }                } else if (handshake == -1 ) {                    getHandler().process(socketWrapper, SocketEvent.CONNECT_FAIL);                    poller.cancelledKey(getSelectionKey(), socketWrapper);                } else if (handshake == SelectionKey.OP_READ){                    socketWrapper.registerReadInterest();                } else if (handshake == SelectionKey.OP_WRITE){                    socketWrapper.registerWriteInterest();                }            } catch (CancelledKeyException cx) {                poller.cancelledKey(getSelectionKey(), socketWrapper);            } catch (VirtualMachineError vme) {                ExceptionUtils.handleThrowable(vme);            } catch (Throwable t) {                log.error(sm.getString("endpoint.processing.fail"), t);                poller.cancelledKey(getSelectionKey(), socketWrapper);            } finally {                socketWrapper = null;                event = null;                //return to cache                if (running && !paused && processorCache != null) {                    processorCache.push(this);                }            }        }

总结

  • Tomcat是如何接收网络请求?

    使用java nio的同步非阻塞去进行网络监听。

    org.apache.tomcat.util.net.AbstractEndpoint#bindWithCleanup中初始化网络监听、SSL

    {            ....            serverSock = ServerSocketChannel.open();            socketProperties.setProperties(serverSock.socket());            InetSocketAddress addr = new InetSocketAddress(getAddress(), getPortWithOffset());            // 当应用层面的连接数到达最大值时,操作系统可以继续接收连接,那么操作系统能继续接收的最大连接数就是这个队列长度,可以通过acceptCount 参数配置,默认是 100            serverSock.bind(addr, getAcceptCount());        }        serverSock.configureBlocking(true); //mimic APR behavior

    org.apache.tomcat.util.net.NioEndpoint#startInternal中初始化业务处理的线程池、连接限制器、Poller线程、Acceptor线程

  • 如何做到高性能的http协议服务器?

    Tomcat把接收连接、检测 I/O 事件以及处理请求进行了拆分,用不同规模的线程去做对应的事情,这也是tomcat能高并发处理请求的原因。不让线程阻塞,尽量让CPU忙起来

Apache Tomcat怎么高并发处理请求

  • 是怎么设计的呢?

    通过接口、抽象类等,将不同的处理逻辑拆分,各司其职

    • org.apache.tomcat.util.net.NioEndpoint.Poller:引用了java.nio.channels.Selector,内部有个事件队列,监听I/O事件具体就是在这里做的

    • org.apache.tomcat.util.net.NioEndpoint.NioSocketWrapper

    • org.apache.tomcat.util.net.NioEndpoint.SocketProcessor: 具体处理请求的线程类

    • org.apache.tomcat.util.net.AbstractEndpoint:I/O事件的检测、处理逻辑都在这个类的实现类里面。使用模板方法,不同的协议有不同的实现方法。NioEndpoint/Nio2Endpoint/AprEndpoint

感谢各位的阅读!关于“Apache Tomcat怎么高并发处理请求”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

--结束END--

本文标题: Apache Tomcat怎么高并发处理请求

本文链接: https://www.lsjlt.com/news/325965.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • Apache Tomcat怎么高并发处理请求
    这篇文章给大家分享的是有关Apache Tomcat怎么高并发处理请求的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。介绍作为常用的http协议服务器,tomcat应用非常广泛。tomcat也是遵循Ser...
    99+
    2023-06-29
  • Apache Tomcat如何高并发处理请求
    目录介绍接收Socket请求Socket请求轮询请求具体处理总结参考:介绍 作为常用的http协议服务器,tomcat应用非常广泛。tomcat也是遵循Servelt协议的,Serv...
    99+
    2024-04-02
  • php如何处理高并发请求
    PHP 处理高并发请求的方法:     使用异步框架:通过使用异步处理方式,可以有效地降低 PHP 处理请求的响应时间,避免因为 IO 操作而导致的等待阻塞。常用的异步框架有ReactPHP和Swoole等。     使用缓存:使用缓存可以...
    99+
    2023-09-11
    php 高并发
  • DynamoDB怎么处理并发读写请求
    DynamoDB 使用了乐观并发控制(Optimistic Concurrency Control)来处理并发读写请求。在 Dyna...
    99+
    2024-04-02
  • java处理高并发请求的方法是什么
    Java处理高并发请求的方法有很多种,以下是一些常用的方法: 使用线程池:可以使用Java中的线程池技术来管理并发请求。通过创建...
    99+
    2023-10-25
    java
  • 用Go高效处理大规模并发请求
    通过使用 goroutine 和 channel 等 go 的并发原语,您可以高效处理大规模并发请求:创建固定数量的 goroutine 并使用 channel 缓冲请求。通过锁或互斥锁...
    99+
    2024-05-12
    并发处理 大规模 并发请求
  • Couchbase中怎么处理并发读写请求
    在Couchbase中处理并发读写请求通常涉及以下几个方面: 使用CAS(Compare-And-Swap)操作:CAS操作是一...
    99+
    2024-04-09
    Couchbase
  • java高并发请求怎么解决
    在处理高并发请求时,可以采取以下几种方法来解决:1. 使用线程池:可以使用线程池来管理并发请求的处理。通过线程池,可以限制同时执行的线程数量,以避免系统资源被耗尽。2. 优化代码:对于需要执行时间较长的操作,可以对代码进行优化,减少执行...
    99+
    2023-08-11
    java
  • JavaScript怎么处理并行请求
    这篇文章主要讲解了“JavaScript怎么处理并行请求”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“JavaScript怎么处理并行请求”吧!需求两个异步...
    99+
    2024-04-02
  • 如何利用PHP实现高效打包并处理并发请求?
    PHP是一种流行的脚本语言,广泛应用于Web开发和服务器端编程。在服务器端编程中,PHP通常用于处理并发请求,例如打包和处理多个请求。本文将介绍如何利用PHP实现高效打包并处理并发请求。 一、打包请求 打包请求是指将多个请求合并为一个请求,...
    99+
    2023-07-27
    打包 并发 面试
  • PHP开发中如何处理接口并发请求和并发处理
    在实际的Web开发中,我们经常会遇到并发请求的情况。并发请求是指多个请求同时发送给服务器进行处理。如果我们的应用程序无法正确处理并发请求,就有可能导致数据不一致、性能下降等问题。本文将介绍如何在PHP开发中处理接口的并发请求和并发处理,并提...
    99+
    2023-10-21
    接口 并发处理 并发请求
  • JavaScript中怎么处理并行请求
    JavaScript中怎么处理并行请求,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1、使用Promise.allconst startTime&nb...
    99+
    2023-06-20
  • Tomcat 9.0.26高并发场景下DeadLock问题怎么处理
    这篇文章给大家分享的是有关Tomcat 9.0.26高并发场景下DeadLock问题怎么处理的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一、Tomcat容器 9.0.26 版本 Deadlock 问题1.1 问...
    99+
    2023-06-04
  • PHP并发编程:如何高效地处理大量请求?
    随着互联网的普及和云计算技术的发展,我们的应用程序面临着越来越多的并发请求。在这种情况下,如何高效地处理大量请求,是每个开发人员需要面对的问题。在PHP编程中,我们可以采用以下几种方式来实现并发处理。 多线程编程 多线程编程是一种常见...
    99+
    2023-07-01
    响应 索引 并发
  • ASP API中如何处理并发请求?
    在现代互联网应用程序中,处理并发请求是必不可少的。ASP API提供了一些机制来处理并发请求,以确保您的应用程序能够保持高效和稳定。在本文中,我们将探讨ASP API中的一些最佳实践来处理并发请求。 1.使用异步方法 在ASP API中,...
    99+
    2023-07-28
    api 并发 数据类型
  • Django 和 Java:谁更适合处理高并发存储请求?
    Django 和 Java 都是非常流行的 Web 开发框架,但是在处理高并发存储请求方面,哪一个更适合?让我们来比较一下 Django 和 Java 的优缺点。 Django 是一个基于 Python 的 Web 开发框架,它的主要特点...
    99+
    2023-10-16
    索引 django 存储
  • Node.js中怎么处理POST请求并获取请求参数
    本篇内容介绍了“Node.js中怎么处理POST请求并获取请求参数”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!接收POST请求在Node....
    99+
    2023-07-05
  • 高并发怎么处理
    高并发的处理:尽可能使网站上的页面采方法用静态页面。图片是最消耗资源的,将图片与页面进行分离。缓存、镜像、负载均衡。需要使用数据库集群或者库表散列。...
    99+
    2024-04-02
  • Cassandra中怎么处理大量的并发读写请求
    在Cassandra中处理大量的并发读写请求通常需要考虑以下几点: 数据模型设计:在设计数据模型时,需要根据实际业务需求和访问模...
    99+
    2024-03-11
    Cassandra
  • 构建高效的 C++ 服务器架构以处理高并发请求
    非常抱歉,由于您没有提供文章标题,我无法为您生成一篇高质量的文章。请您提供文章标题,我将尽快为您生成一篇优质的文章。...
    99+
    2024-05-14
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作