广告
返回顶部
首页 > 资讯 > 后端开发 > Python >java限流算法详细
  • 242
分享到

java限流算法详细

2024-04-02 19:04:59 242人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录1、场景2、算法详解2.1 计数算法2.1.1 说明 2.1.2 适用场景2.1.3 代码2.2 漏桶算法2.2.1 说明 2.2.2 漏桶算法图示2.2.3 适用场景2.2.4

1、场景

程序中经常需要对接口进行限流,防止访问量太大,导致程序崩溃。

常用的算法有:计数算法、漏桶算法令牌桶算法,最常用的算法是后面两种。

2、算法详解

2.1 计数算法

2.1.1 说明

技术算法,为最简单的限流算法。

核心思想是,每隔一段时间,为计数器设定最大值,请求一次,计数器数量减一,如果计数器为0则拒绝请求

计数器算法图示:

2.1.2 适用场景

虽然此算法是大多数人第一个想到可以限流的算法,但是不推荐使用此算法

因为,此算法有个致命性的问题,如果1秒允许的访问次数为100,前0.99秒内没有任何请求,在最后0.01秒内,出现了200个请求,则这200个请求,都会获取调用许可,给程序带来一次请求的高峰。

如下图所示:计数器算法缺点

2.1.3 代码


import java.time.LocalDateTime;
import java.util.concurrent.TimeUnit;


public class CountLimiter {
    
    private int secondMill;
    
    
    private int maxCount;
    
    
    private int currentCount;
    
    
    private long lastUpdateTime;
    
    public CountLimiter(int second, int count) {
        if (second <= 0 || count <= 0) {
            throw new IllegalArgumentException("second and time must by positive");
        }
        this.secondMill = second * 1000;
        this.maxCount = count;
        this.currentCount = this.maxCount;
        this.lastUpdateTime = System.currentTimeMillis();
    }
    
    
    private void refreshCount() {
        long now = System.currentTimeMillis();
        if ((now - this.lastUpdateTime) >= secondMill) {
            this.currentCount = maxCount;
            this.lastUpdateTime = now;
        }
    }
    
    
    public synchronized boolean tryAcquire() {
        // 刷新计数器
        this.refreshCount();
        if ((this.currentCount - 1) >= 0) {
            this.currentCount--;
            return true;
        } else {
            return false;
        }
    }
}

测试方法:


public static void main(String[] args) throws Exception {
    // 1秒限制执行2次
    CountLimiter countLimiter = new CountLimiter(1, 2);
    for (int i = 0; i < 10; i++) {
        System.out.println(LocalDateTime.now() + " " + countLimiter.tryAcquire());
        TimeUnit.MILLISECONDS.sleep(200);
    }
}

执行结果:


2021-05-31T22:01:08.660 true
2021-05-31T22:01:08.868 true
2021-05-31T22:01:09.074 false
2021-05-31T22:01:09.275 false
2021-05-31T22:01:09.485 false
2021-05-31T22:01:09.698 true
2021-05-31T22:01:09.901 true
2021-05-31T22:01:10.104 false
2021-05-31T22:01:10.316 false
2021-05-31T22:01:10.520 false

2.2 漏桶算法

2.2.1 说明

漏桶算法称为leaky bucket,可限制指定时间内的最大流量,如限制60秒内,最多允许100个请求。

其中接受请求的速度是不恒定的(水滴入桶),处理请求的速度是恒定的(水滴出桶)。

算法总体描述如下:

  • 有个固定容量的桶B(指定时间区间X,允许的的最大流量B),如60秒内最多允许100个请求,则B为100,X为60。
  • 有水滴流进来(有请求进来),桶里的水+1。
  • 有水滴流出去(执行请求对应的业务),桶里的水-1(业务方法,真正开始执行=>这是保证漏桶匀速处理业务的根本),水滴流出去的速度是匀速的,流速为B/X(1毫秒100/60次,约1毫秒0.00167次,精度可根据实际情况自己控制)
  • 水桶满了后(60秒内请求达到了100次),水滴无法进入水桶,请求被拒绝

2.2.2 漏桶算法图示

实际开发中,漏桶的使用方式可参考下图:

注意:水滴滴落的时候,才开始执行业务代码,而不是水滴进桶的时候,去执行业务代码。

业务代码的执行方式,个人认为有如下两种:

同步执行:

  • 调用方请求时,如水滴可以放入桶中,调用方所在的线程“阻塞”
  • 水滴漏出时,唤醒调用方线程,调用方线程,执行具体业务

异步执行:

  • 调用方请求时,如水滴可以放入桶中,调用方所在的线程收到响应,方法将异步执行
  • 水滴漏出时,水桶代理执行具体业务

网上很多滴桶的实现代码,在水滴进桶的时候,就去执行业务代码了。这样会导致业务代码,无法匀速地执行,仍然对被调用的接口有一瞬间流量的冲击(和令牌桶算法的最终实现效果一样)。

2.2.3 适用场景

水桶的进水速度是不可控的,有可能一瞬间有大量的请求进入水桶。处理请求的速度是恒定的(滴水的时候处理请求)。

此算法,主要应用于自己的服务,调用外部接口。以均匀的速度调用外部接口,防止对外部接口的压力过大,而影响外部系统的稳定性。如果影响了别人的系统,接口所在公司会来找你喝茶。

漏桶算法,主要用来保护别人的接口。

2.2.4 代码

本实例代码的实现,在水滴滴下,执行具体业务代码时,采用同步执行的方式。即唤醒调用方的线程,让"调用者"所属的线程去执行具体业务代码,去调用接口


import java.net.SocketTimeoutException;
import java.time.LocalDateTime;
import java.util.Queue;
import java.util.UUID;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.LockSupport;


public class LeakyBucketLimiterUtil {
    
    
    private long outflowRateNanos;
    
    
    private volatile BlockingQueue<Drip> queue;
    
    
    private Thread outflowThread;
    
    
    private static class Drip {
        
        private String busId;
        
        
        private Thread thread;
        
        public Drip(String busId, Thread thread) {
            this.thread = thread;
        }
        
        public String getBusId() {
            return this.busId;
        }
        
        public Thread getThread() {
            return this.thread;
        }
    }
    
    
    public LeakyBucketLimiterUtil(int second, int time) {
        if (second <= 0 || time <= 0) {
            throw new IllegalArgumentException("second and time must by positive");
        }
        
        outflowRateNanos = TimeUnit.SECONDS.toNanos(second) / time;
        queue = new LinkedBlockingQueue<>(time);
        
        outflowThread = new Thread(() -> {
            while (true) {
                Drip drip = null;
                try {
                    // 阻塞,直到从桶里拿到水滴
                    drip = queue.take();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                if (drip != null && drip.getThread() != null) {
                    // 唤醒阻塞的水滴里面的线程
                    LockSupport.unpark(drip.getThread());
                }
                // 休息一段时间,开始下一次滴水
                LockSupport.parkNanos(this, outflowRateNanos);
            }
        }, "漏水线程");
        outflowThread.start();
    }
    
    
    public boolean acquire(String busId) {
        Thread thread = Thread.currentThread();
        Drip drip = new Drip(busId, thread);
        if (this.queue.offer(drip)) {
            LockSupport.park();
            return true;
        } else {
            return false;
        }
    }
}

测试代码如下:


public static void main(String[] args) throws Exception {
    // 1秒限制执行1次
    LeakyBucketLimiterUtil leakyBucketLimiter = new LeakyBucketLimiterUtil(5, 2);
    for (int i = 0; i < 10; i++) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                String busId = "[业务ID:" + LocalDateTime.now().toString() + "]";
                if (leakyBucketLimiter.acquire(busId)) {
                    System.out.println(LocalDateTime.now() + " " + Thread.currentThread().getName() + ":调用外部接口...成功:" + busId);
                } else {
                    System.out.println(LocalDateTime.now() + " " + Thread.currentThread().getName() + ":调用外部接口...失败:" + busId);
                }
            }
        }, "测试线程-" + i).start();
        TimeUnit.MILLISECONDS.sleep(500);
    }
}

执行结果如下:


2021-05-31T20:52:52.297 测试线程-0:调用外部接口...成功:[业务ID:2021-05-31T20:52:52.295]
2021-05-31T20:52:53.782 测试线程-3:调用外部接口...失败:[业务ID:2021-05-31T20:52:53.782]
2021-05-31T20:52:54.286 测试线程-4:调用外部接口...失败:[业务ID:2021-05-31T20:52:54.286]
2021-05-31T20:52:54.799 测试线程-1:调用外部接口...成功:[业务ID:2021-05-31T20:52:52.761]
2021-05-31T20:52:55.300 测试线程-6:调用外部接口...失败:[业务ID:2021-05-31T20:52:55.300]
2021-05-31T20:52:55.806 测试线程-7:调用外部接口...失败:[业务ID:2021-05-31T20:52:55.806]
2021-05-31T20:52:56.307 测试线程-8:调用外部接口...失败:[业务ID:2021-05-31T20:52:56.307]
2021-05-31T20:52:56.822 测试线程-9:调用外部接口...失败:[业务ID:2021-05-31T20:52:56.822]
2021-05-31T20:52:57.304 测试线程-2:调用外部接口...成功:[业务ID:2021-05-31T20:52:53.271]
2021-05-31T20:52:59.817 测试线程-5:调用外部接口...成功:[业务ID:2021-05-31T20:52:54.799]


2.3 令牌桶算法

2.3.1 说明

令牌桶算法,主要是匀速地增加可用令牌,令牌数因为桶的限制有数量上限。

请求拿到令牌,相当于拿到授权,即可进行相应的业务操作。

2.3.2 令牌桶算法图示

2.3.3 适用场景

和漏桶算法比,有可能导致短时间内的请求数上升(因为拿到令牌后,就可以访问接口,有可能一瞬间将所有令牌拿走),但是不会有计数算法那样高的峰值(因为令牌数量是匀速增加的)。

一般自己调用自己的接口,接口会有一定的伸缩性,令牌桶算法,主要用来保护自己的服务器接口

2.3.4 代码

代码实现如下:


import java.time.LocalDateTime;
import java.util.concurrent.TimeUnit;


public class TokenBucketLimiter {
    
    
    private double bucketSize;
    
    
    private double tokenCount;
    
    
    private double tokenAddRateMillSecond;
    
    
    private long lastUpdateTime;
    
    
    public TokenBucketLimiter(double second, double time) {
        if (second <= 0 || time <= 0) {
            throw new IllegalArgumentException("second and time must by positive");
        }
        // 桶的大小
        this.bucketSize = time;
        // 桶里的令牌数
        this.tokenCount = this.bucketSize;
        // 令牌增加速度(每毫秒)
        this.tokenAddRateMillSecond = time / second / 1000;
        // 上次更新时间(毫秒)
        this.lastUpdateTime = System.currentTimeMillis();
    }
    
    
    private void refreshTokenCount() {
        long now = System.currentTimeMillis();
        this.tokenCount = Math.min(this.bucketSize, this.tokenCount + ((now - this.lastUpdateTime) * this.tokenAddRateMillSecond));
        this.lastUpdateTime = now;
    }
    
    
    public synchronized boolean tryAcquire() {
        // 刷新桶内令牌数
        this.refreshTokenCount();
        if ((this.tokenCount - 1) >= 0) {
            // 如果桶中有令牌,令牌数-1
            this.tokenCount--;
            return true;
        } else {
            // 桶中已无令牌
            return false;
        }
    }
}

测试代码:


public static void main(String[] args) throws Exception{
    // 2秒执行1次
    TokenBucketLimiter leakyBucketLimiter = new TokenBucketLimiter(2, 1);
    for (int i = 0; i < 10; i++) {
        System.out.println(LocalDateTime.now() + " " + leakyBucketLimiter.tryAcquire());
        TimeUnit.SECONDS.sleep(1);
    }
}

执行结果如下:


2021-05-31T21:38:34.560 true
2021-05-31T21:38:35.582 false
2021-05-31T21:38:36.588 true
2021-05-31T21:38:37.596 false
2021-05-31T21:38:38.608 true
2021-05-31T21:38:39.610 false
2021-05-31T21:38:40.615 true
2021-05-31T21:38:41.627 false
2021-05-31T21:38:42.641 true
2021-05-31T21:38:43.649 false

2.3.5 第三方工具类

可以使用Guava中的RateLimiter来实现令牌桶的限流功能。

maven依赖如下:


<dependency>
    <groupId>com.Google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>30.1.1-jre</version>
</dependency>


直接获取令牌(true为获取到令牌,false为获取失败):


RateLimiter rateLimiter = RateLimiter.create(2);
boolean acquireResule = rateLimiter.tryAcquire();
if (acquireResule) {
    System.out.println("获取令牌:成功");
} else {
    System.out.println("获取令牌:失败");
}


等待尝试获取令牌(阻塞当前线程,直到获取到令牌):


RateLimiter rateLimiter = RateLimiter.create(2);
// 阻塞获取令牌
double waitCount = rateLimiter.acquire();
System.out.println("阻塞等待时间:" + waitCount);

以上就是java限流算法详细的详细内容,更多关于java限流算法的资料请关注编程网其它相关文章!希望大家以后多多支持编程网!

--结束END--

本文标题: java限流算法详细

本文链接: https://www.lsjlt.com/news/134306.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • java限流算法详细
    目录1、场景2、算法详解2.1 计数算法2.1.1 说明 2.1.2 适用场景2.1.3 代码2.2 漏桶算法2.2.1 说明 2.2.2 漏桶算法图示2.2.3 适用场景2.2.4...
    99+
    2022-11-12
  • Java常见的限流算法详细分析并实现
    目录为什么要限流限流算法计数器限流漏桶限流令牌桶限流为什么要限流 在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用...
    99+
    2022-11-13
  • 详解5种Java中常见限流算法
    目录01固定窗口02滑动窗口03漏桶算法04令牌桶05滑动日志06分布式限流07总结1.瞬时流量过高,服务被压垮? 2.恶意用户高频光顾,导致服务器宕机? 3.消息消费过快,导致数据...
    99+
    2023-05-14
    Java常见限流算法 Java限流算法 Java限流
  • 二分算法(java超详细)
    文章目录 目录 文章目录 一、二分查找 1. 整数二分 1.1 二分查找算法模板1 1.2 二分查找算法模板2 1.3 二分查找算法模板3 1.4 二分查找算法模板4 1.5 二分查找算法模板5 练习题目+详解 ...
    99+
    2023-09-08
    算法 java 数据结构
  • Java实现5种限流算法及7种限流方式
    目录前言1. 限流2. 固定窗口算法2.1. 代码实现3. 滑动窗口算法3.1. 代码实现4. 滑动日志算法4.1. 代码实现5. 漏桶算法6. 令牌桶算法6.1. 代码实现6.2....
    99+
    2022-11-13
    Java 限流算法 Java 限流方式 Java 限流
  • 【Stream流】java中Stream流详细使用方法
    在Java中,Stream是一种用于处理集合数据的流式操作API。它提供了一种简洁、灵活、高效的方式来对集合进行各种操作,如过滤、映射、排序等。下面是一些Stream的常用功能和详细的代码示例: 创...
    99+
    2023-09-29
    java spring boot 后端 开发语言
  • Java Zookeeper分布式分片算法超详细讲解流程
    目录背景技术方案分布式协调中间件基于Zookeeper的技术方案服务注册目录设计服务分片处理流程编码实现总结背景 公司的一个服务需要做类似于分片的逻辑,一开始服务基于传统部署方式通过...
    99+
    2023-03-01
    Java Zookeeper分布式分片算法 Java Zookeeper Java分布式分片算法
  • Java贪心算法超详细讲解
    目录什么是贪心算法通过场景理解算法问题分析总结什么是贪心算法 在分析和求解某个问题时,在每一步的计算选择上都是最优的或者最好的,通过这种方式期望最终的计算的结果也是最优的。也就是说,...
    99+
    2022-11-13
  • Java服务限流算法的6种实现
    目录固定窗口算法滑动窗口算法漏桶算法令牌桶算法中间件限流网关限流总结服务限流,是指通过控制请求的速率或次数来达到保护服务的目的,在微服务中,我们通常会将它和熔断、降级搭配在一起使用,...
    99+
    2023-05-20
    Java服务限流 服务限流
  • Java中4种经典限流算法讲解
    目录限流是什么常见的限流算法固定窗口限流算法滑动窗口限流算法漏桶算法令牌桶算法最近,我们的业务系统引入了Guava的RateLimiter限流组件,它是基于令牌桶算法实现的,而令牌桶...
    99+
    2022-11-13
    Java 限流算法 Java 限流
  • Java中常见的限流算法有哪些
    这篇“Java中常见的限流算法有哪些”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Java中常见的限流算法有哪些”文章吧。0...
    99+
    2023-07-05
  • Java常见的限流算法怎么实现
    这篇“Java常见的限流算法怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Java常见的限流算法怎么实现”文章吧。为...
    99+
    2023-06-29
  • Java限流实现的几种方法详解
    目录计数器信号量滑动窗口漏桶令牌桶测试示例代码计数器 计数器限流方式比较粗暴,一次访问就增加一次计数,在系统内设置每 N 秒的访问量,超过访问量的访问直接丢弃,从而实现限流访问。 具...
    99+
    2022-12-03
    Java限流 Java限流算法 Java限流方案
  • Java高并发系统限流算法的实现
    目录1 概述2 计数器限流2.1 概述2.2 实现2.3 结果分析2.4 优缺点2.5 应用3 漏桶算法3.1 概述3.2 实现3.3 结果分析3.4 优缺点4 令牌桶算法4.1 概...
    99+
    2022-11-13
  • Java的Stream流详细讲解
    一.Stream 是什么 Stream是Java 8新增的重要特性, 它提供函数式编程支持并允许以管道方式操作集合. 流操作会遍历数据源, 使用管道式操作处理数据后生成结果集合, 这个过程通常不会对数据源造成影响。 ​ 同时stream不是...
    99+
    2023-08-31
    java 开发语言
  • Java I/O流之打印流详细使用方法教程
    目录打印流打印流基本使用输出语句重定向总结打印流 打印流基本使用 打印流: 作用:打印流可以实现更方便、更高效的打印数据到文件中去。打印流一般是指:PrintStream,Prin...
    99+
    2023-01-31
    Java打印流 java打印流有什么用 java io流
  • Java 超详细讲解字符流
    目录一、字符流的由来二、编码表字符集:Unicode字符集:UTF-8编码规则:三、字符串中的编码解码问题编码方法(IDEA):解码方法(IDEA):四、字符流的编码解码问题四、字符...
    99+
    2022-11-13
  • Java中IO流的详细介绍
    这篇文章主要介绍“Java中IO流的详细介绍”,在日常操作中,相信很多人在Java中IO流的详细介绍问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java中IO流的详细介绍”的疑惑有所帮助!接下来,请跟着小编...
    99+
    2023-06-20
  • Java IO流 - 打印流详细使用介绍
    文章目录 打印流打印流基本使用输出语句重定向 打印流 打印流基本使用 打印流: 作用:打印流可以实现更方便、更高效的打印数据到文件中去。打印流一般是指:PrintStrea...
    99+
    2023-09-05
    java 算法 开发语言
  • Java模拟实现HashMap算法流程详解
    目录1、前言2、成员变量的设定3、构造方法4、hash方法以及阈值判断方法5、put方法6、resize 方法7、get 方法1、前言 上期讲解了 HashMap 和 HashSet...
    99+
    2023-02-08
    Java HashMap Java模拟实现HashMap
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作