广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C语言数据结构之二叉树详解
  • 830
分享到

C语言数据结构之二叉树详解

2024-04-02 19:04:59 830人浏览 安东尼
摘要

目录1. 树概念及结构1.1树概念1.2树的表示2. 二叉树概念及结构2.1概念2.2数据结构中的二叉树2.3特殊的二叉树2.4二叉树的存储结构2.5二叉树的性质3. 二叉树顺序结构

1. 树概念及结构

1.1树概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 根结点:根节点没有前驱结点。
  • 除根节点外,其余结点被分成是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 因此,树是递归定义的。

  1. 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为2
  2. 叶节点:度为0的节点称为叶节点; 如上图:G、H、I节点为叶节点
  3. 非终端节点或分支节点:度不为0的节点; 如上图:B、D、C、E、F节点为分支节点
  4. 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  5. 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  6. 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  7. 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为2
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  9. 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  10. 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  11. 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  12. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  13. 森林:由m棵互不相交的树的集合称为森林;

1.2树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

    typedef int DataType;
    struct node
    {
         struct Node* firstChild1; 
         struct Node* pNextBrother; 
         DataType data; 
    };

2. 二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

二叉树的特点:

  • 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
  • 二叉树的子树有左右之分,其子树的次序不能颠倒。

2.2数据结构中的二叉树

2.3特殊的二叉树

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.4二叉树的存储结构

二叉树一般可以使用两种存储结构,一种顺序结构,一种链式结构。

2.4.1顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.4.2链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

   // 二叉链
   struct BinaryTreeNode
   {
    struct BinTreeNode* _pLeft; // 指向当前节点左孩子
    struct BinTreeNode* _pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点值域
   }
   // 三叉链
   struct BinaryTreeNode
   {
    struct BinTreeNode* _pParent; // 指向当前节点的双亲
    struct BinTreeNode* _pLeft; // 指向当前节点左孩子
    struct BinTreeNode* _pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点值域
   };

2.5二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.
  • 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=Log2(n+1). (ps:Log2(n+1)是log以2为
  • 底,n+1为对数)
  • 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子

3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

3. 二叉树顺序结构及概念

3.1二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2堆的概念及结构

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

3.3堆的实现

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* _a;
	int _size;
	int _capacity;
}Heap;

void swap(int *a, int *b);
void AdjustDown(int *a, int parent, int n);
void AdjustUp(int *a, int child, int n);

// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

// 对数组进行堆排序
void HeapSort(int* a, int n);
void swap(int *a, int *b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

void AdjustUp(int *a, int child, int n)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void AdjustDown(int *a, int parent,int n)
{
	int child = parent * 2 + 1;
	while ( child < n)
	{
		if (child + 1 < n && a[child]<a[child + 1])
		{
			++child;
		}
		if(a[child]>a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = (parent * 2) + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapCreate(Heap* hp, HPDataType* a, int n)
{
	assert(hp);
	hp->_a = (HPDataType*)malloc(sizeof(HPDataType)*n);
	if (hp->_a == NULL)
	{
		printf("malloc fail");
		exit(-1);
	}
	for (int i = 0; i < n; ++i)
	{
		hp->_a[i] = a[i];
	}
	hp->_size = hp->_capacity = n;
	for (int i = (n - 2) / 2; i >= 0; --i)
	{
		AdjustDown(hp->_a,i, hp->_size);
	}
}

// 堆的销毁
void HeapDestory(Heap* hp)
{
	assert(hp);
	hp->_size = hp->_capacity = 0;
	free(hp);
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	if (hp->_size == hp->_capacity)
	{
		HPDataType* tmp = (HPDataType*)realloc(hp->_a, sizeof(HPDataType)* 2 * hp->_capacity);
		if (tmp == NULL)
		{
			printf("realloc fail");
			exit(-1);
		}
		hp->_a = tmp;
		hp->_a[hp->_size] = x;
		++hp->_size;
		hp->_capacity *= 2;
	}
	else
	{
		hp->_a[hp->_size] = x;
		++hp->_size;
	}
	AdjustUp(hp->_a, hp->_size-1, hp->_size);

}
// 堆的删除
void HeapPop(Heap* hp)
{
	assert(hp);
	assert(hp->_size>0);
	swap(&hp->_a[hp->_size-1], &hp->_a[0]);
	--hp->_size;
	AdjustDown(hp->_a, 0, hp->_size);
}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(hp->_size>0);
	return hp->_a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->_size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->_size == 0 ? 1 : 0;

	for (int i = 0; i < 3; ++i)}

// 对数组进行堆排序
void HeapSort(int* a, int n)
{
	assert(a);
	for (int i = (n - 2) / 2; i >= 0; --i)
	{
		AdjustDown(a, i, n);
	}
	int end = n - 1;
	while (end > 0)
	{
		swap(&a[0], &a[end]);
		AdjustDown(a, 0, end);
		--end;
	}
}

4. 二叉树链式结构及实现

4.1二叉树链式结构的遍历

所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问 题。 遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。

前序/中序/后序的递归结构遍历:是根据访问结点操作发生位置命名

NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。

LNR:中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

LRN:后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

4.2二叉树的链式实现

typedef char BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType _data;
	struct BinaryTreeNode* _left;
	struct BinaryTreeNode* _right;
}BTNode;




typedef BTNode* QDataType;
// 链式结构:表示队列 
typedef struct QListNode
{
	struct QListNode* _next;
	QDataType _data;
}QNode;

// 队列的结构 
typedef struct Queue
{
	QNode* _front;
	QNode* _rear;
}Queue;




BTNode* CreateBTNode(BTDataType x);
// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelkSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);



// 初始化队列 
void QueueInit(Queue* q);
// 队尾入队列 
void QueuePush(Queue* q, QDataType data);
// 队头出队列 
void QueuePop(Queue* q);
// 获取队列头部元素 
QDataType QueueFront(Queue* q);
// 获取队列队尾元素 
QDataType QueueBack(Queue* q);
// 获取队列中有效元素个数 
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q);
// 销毁队列 
void QueueDestroy(Queue* q);



// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
// 初始化队列 
void QueueInit(Queue* q)
{
	assert(q);
	q->_front = q->_rear = NULL;
}
// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{
	assert(q);
	QNode *newnode = ((QNode*)malloc(sizeof(QNode)));
	newnode->_data = data;
	newnode->_next = NULL;
	if (q->_rear == NULL)
	{
		q->_front = q->_rear = newnode;
	}
	else
	{
		q->_rear->_next = newnode;
		//q->_rear = q->_rear->_next;
		q->_rear = newnode;
	}
}
// 队头出队列 
void QueuePop(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	if (q->_front == q->_rear)
	{
		free(q->_front);
		//free(q->_rear);
		q->_front = q->_rear = NULL;
	}
	else
	{
		QNode *cur = q->_front->_next;
		free(q->_front);
		q->_front = cur;
	}
}
// 获取队列头部元素 
QDataType QueueFront(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	return q->_front->_data;
}
// 获取队列队尾元素 
QDataType QueueBack(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	return q->_rear->_data;
}
// 获取队列中有效元素个数 
int QueueSize(Queue* q)
{
	assert(q);
	int size = 0;
	QNode* cur = q->_front;
	while (cur)
	{
		++size;
		cur = cur->_next;
	}
	return size;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q)
{
	assert(q);
	return q->_front == NULL ? 1 : 0;
}
// 销毁队列 
void QueueDestroy(Queue* q)
{
	assert(q);
	QNode *cur = q->_front;
	while (cur)
	{
		QNode *next = cur->_next;
		free(cur);
		cur = next;
	}
	q->_front = q->_rear = NULL;
}






BTNode* CreateBTNode(BTDataType x)
{
	BTNode *node = (BTNode*)malloc(sizeof(BTNode));
	node->_data = x;
	node->_left = NULL;
	node->_right = NULL;
	return node;
}


// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi)
{
	if (a[*pi] == '#')
	{
		return NULL;
	}
	BTNode *node = (BTNode*)malloc(sizeof(BTNode));
	node->_data = a[*pi];
	++*pi;
	node->_left = BinaryTreeCreate(a, n, pi);
	++*pi;
	node->_right = BinaryTreeCreate(a, n, pi);
	return node;
}
// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
	if (*root != NULL)
	{
		if ((*root)->_left) // 有左孩子
			BinaryTreeDestory(&(*root)->_left); // 销毁左孩子子树
		if ((*root)->_right) // 有右孩子
			BinaryTreeDestory(&(*root)->_right); // 销毁右孩子子树

		free(*root); // 释放根结点
		*root = NULL; // 空指针赋NULL
	}
}
// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	return BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;
}
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->_left == NULL&&root->_right == NULL)
	{
		return 1;
	}
	return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->_data == x)
	{
		return root;
	}
	BTNode* ret=BinaryTreeFind(root->_left,x);
	if (ret != NULL)
	{
		return ret;
	}
	ret = BinaryTreeFind(root->_right, x);
	if (ret != NULL)
	{
		return ret;
	}
	return NULL;
}
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		//printf("NULL  ");
		return;
	}
	printf("%c  ", root->_data);
	BinaryTreePrevOrder(root->_left);
	BinaryTreePrevOrder(root->_right);
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		//printf("NULL  ");
		return;
	}
	BinaryTreeInOrder(root->_left);
	printf("%c  ", root->_data);
	BinaryTreeInOrder(root->_right);
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		//printf("NULL  ");
		return;
	}
	BinaryTreePostOrder(root->_left);
	BinaryTreePostOrder(root->_right);
	printf("%c  ", root->_data);
}
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		BTNode *front = QueueFront(&q);
		QueuePop(&q);
		printf("%c  ", front->_data);
		if (front->_left)
		{
			QueuePush(&q, front->_left);
		}
		if (front->_right)
		{
			QueuePush(&q, front->_right);
		}
	}
}
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		BTNode *front = QueueFront(&q);
		QueuePop(&q);
		if (front == NULL)
		{
			break;
		}
		printf("%s ", front->_data);
		if (front->_left)
		{
			QueuePush(&q, front->_left);
		}
		if (front->_right)
		{
			QueuePush(&q, front->_right);
		}
	}
	while (!QueueEmpty(&q))
	{
		BTNode *front = QueueFront(&q);
		QueuePop(&q);
		if (front != NULL)
		{
			return 0;
		}
	}
	return 1;

}

到此这篇关于C语言数据结构之二叉树详解的文章就介绍到这了,更多相关C语言二叉树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C语言数据结构之二叉树详解

本文链接: https://www.lsjlt.com/news/142032.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C语言数据结构之二叉树详解
    目录1. 树概念及结构1.1树概念1.2树的表示2. 二叉树概念及结构2.1概念2.2数据结构中的二叉树2.3特殊的二叉树2.4二叉树的存储结构2.5二叉树的性质3. 二叉树顺序结构...
    99+
    2022-11-13
  • C语言数据结构之二叉链表创建二叉树
    目录一、思想(先序思想创建)二、创建二叉树(1)传一级参数方法(2)传二级参数方法一、思想(先序思想创建) 第一步先创建根节点,然后创建根节点左子树,开始递归创建左子树,直到递归创建...
    99+
    2022-11-13
  • Go语言数据结构之二叉树可视化详解
    目录题目源代码做题思路扩展左右并列展示上下并列展示总结回顾题目 以图形展示任意二叉树,如下图,一个中缀表达式表示的二叉树:3.14*r²*h/3 源代码 package ...
    99+
    2022-11-11
  • C语言二叉树的概念结构详解
    目录1、树的概念及结构(了解)1.1树的概念:1.2树的表示法:2、二叉树的概念及结构2.1二叉树的概念2.2特殊的二叉树2.2二叉树的性质2.3二叉树的顺序存储2.4二叉树的链式存...
    99+
    2022-11-13
    C语言二叉树 C语言二叉树的创建
  • C语言数据结构详细解析二叉树的操作
    目录二叉树分类二叉树性质性质的使用二叉树的遍历前序遍历中序遍历后序遍历层序遍历求二叉树的节点数求二叉树叶子结点个数求二叉树的最大深度二叉树的销毁二叉树分类 满二叉树 除最后一层无任何...
    99+
    2022-11-13
  • C语言 链式二叉树结构详解原理
    目录前言二叉树节点声明二叉树的遍历构建二叉树1.前序遍历2.中序遍历3.后序遍历二叉树节点的个数二叉树叶子节点的个数二叉树第K层节点个数二叉树的高度/深度二叉树查找值为x的节点整体代...
    99+
    2022-11-12
  • C语言数据结构二叉树之堆的实现和堆排序详解
    目录一、本章重点二、堆2.1堆的介绍2.2堆的接口实现三、堆排序一、本章重点 堆的介绍堆的接口实现堆排序 二、堆 2.1堆的介绍 一般来说,堆在物理结构上是连续的数组结构,在逻辑结构...
    99+
    2022-11-13
  • 数据结构之链式二叉树详解
    目录🍏1.二叉树的遍历🍏1.1前序遍历1.2中序遍历1.3后序遍历1.4层次遍历 🍎2.链式二叉树的实现🍎2.1二叉树的创建2.2前序遍历2.3中序遍历2.4后序遍历2.5...
    99+
    2023-05-16
    C语言链式二叉树 数据结构链式二叉树 C语言 数据结构
  • C语言之平衡二叉树详解
    目录什么是平衡二叉树平衡二叉树的基本特点为什么会出现平衡二叉树二叉树四种不平衡的情况C语言实现平衡二叉树什么是平衡二叉树 平衡二叉树是具有平衡属性的有序二叉树,所谓的平衡即当前树的左...
    99+
    2023-05-17
    C语言二叉树 C语言平衡二叉树
  • C++数据结构之二叉搜索树的实现详解
    目录前言介绍实现节点的实现二叉搜索树的查找二叉搜索树的插入二叉搜索树的删除总结前言 今天我们来学一个新的数据结构:二叉搜索树。 介绍 二叉搜索树也称作二叉排序树,它具有以下性质: 非...
    99+
    2022-11-13
  • Go 数据结构之二叉树详情
    目录Go 语言实现二叉树定义二叉树的结构二叉树遍历创建二叉树插入值测试前言: 树可以有许多不同的形状,并且它们可以在每个节点允许的子节点数量或它们在节点内组织数据值的方式上有所不同。...
    99+
    2022-11-13
  • 详解Java数据结构之平衡二叉树
    目录什么是二叉搜索树平衡二叉搜索树平衡二叉搜索树建树程序计算每个节点的高度计算每个节点的平衡因子合并二叉树旋转调整函数整体代码什么是二叉搜索树 简单来说,就是方便搜索的二叉树,是一种...
    99+
    2022-11-13
  • Java数据结构之二叉搜索树详解
    目录前言性质实现节点结构初始化插入节点查找节点删除节点最后前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不...
    99+
    2022-11-13
  • C语言数据结构系列篇二叉树的概念及满二叉树与完全二叉树
    链接:C语言数据结构系列之树的概念结构和常见表示方法 0x00 概念 定义:二叉树既然叫二叉树,顾名思义即度最大为2的树称为二叉树。 它的度可以为 1 也可...
    99+
    2022-11-13
  • C语言植物大战数据结构二叉树堆
    目录前言堆的概念创建结构体初始化结构体销毁结构体向堆中插入数据1.堆的物理结构和逻辑结构2.完全二叉树下标规律3.插入数据思路依次打印堆的值删除堆顶的值判断堆是否为空求堆中有几个元素...
    99+
    2022-11-13
  • C语言数据结构二叉树递归的方法
    本篇内容介绍了“C语言数据结构二叉树递归的方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、二叉树的遍历算法二叉树的精髓在于遍历。遍历掌...
    99+
    2023-06-30
  • C++详解数据结构中的搜索二叉树
    目录定义查找某个元素构造搜索二叉树往搜索二叉树中插入元素搜索二叉树删除节点定义 搜索二叉树,也称有序二叉树,排序二叉树,是指一棵空树或者具有下列性质的二叉树: 1、若任意节点的左子树...
    99+
    2022-11-13
  • C语言植物大战数据结构二叉树递归
    目录前言一、二叉树的遍历算法1.构造二叉树2.前序遍历(递归图是重点.)3.中序遍历4.后序遍历二、二叉树遍历算法的应用1.求节点个数3.求第k层节点个数4.查找值为x的节点5.二叉...
    99+
    2022-11-13
  • C语言数据结构系列篇二叉树的遍历
    目录前言:Ⅰ.  定义二叉树0x00 二叉树的概念(回顾)0x00 定义二叉树0x01 手动创建二叉树Ⅱ.  二叉树的遍历...
    99+
    2022-11-13
  • C语言平衡二叉树详解
    目录调整措施:一、单旋转二、双旋转AVL树的删除操作:删除分为以下几种情况:1.要删除的节点是当前根节点T。2、要删除的节点元素值小于当前根节点T值,在左子树中进行删除。3、要删除的...
    99+
    2022-11-12
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作