广告
返回顶部
首页 > 资讯 > 后端开发 > GO >golang字符串本质与原理详解
  • 573
分享到

golang字符串本质与原理详解

2024-04-02 19:04:59 573人浏览 独家记忆
摘要

目录一、字符串的本质1.字符串的定义2.字符串的长度3.字符与符文二、字符串的原理1.字符串的解析2.字符串的拼接3.字符串的转换总结一、字符串的本质 1.字符串的定义 golang

一、字符串的本质

1.字符串的定义

golang中的字符(character)串指的是所有8比特位字节字符串的集合,通常(非必须)是UTF-8 编码的文本。 字符串可以为空,但不能是nil。 字符串在编译时即确定了长度,值是不可变的。

// Go/src/builtin/builtin.go
// string is the set of all strings of 8-bit bytes, conventionally but not
// necessarily representing UTF-8-encoded text. A string may be empty, but
// not nil. Values of string type are immutable.
type string string

字符串在本质上是一串字符数组,每个字符在存储时都对应了一个或多个整数,整数是多少取决于字符集的编码方式。

s := "golang"
for i := 0; i < len(s); i++ {
  fmt.Printf("s[%v]: %v\n",i, s[i])
}
// s[0]: 103
// s[1]: 111
// s[2]: 108
// s[3]: 97
// s[4]: 110
// s[5]: 103

字符串在编译时类型为string,在运行时其类型定义为一个结构体,位于reflect包中:

// go/src/reflect/value.go
// StringHeader is the runtime representation of a string.
// ...
type StringHeader struct {
    Data uintptr
    Len  int
}

根据运行时字符串的定义可知,在程序运行的过程中,字符串存储了长度(Len)及指向实际数据的指针(Data)。

2.字符串的长度

golang中所有文件都采用utf8编码,字符常量也使用utf8编码字符集。1个英文字母占1个字节长度,一个中文占3个字节长度。go中对字符串取长度len(s)指的是字节长度,而不是字符个数,这与动态语言如python中的表现有所差别。如:

print(len("go语言")) 
# 4
s := "go语言"
fmt.Printf("len(s): %v\n", len(s)) 
// len(s): 8

3.字符与符文

go中存在一个特殊类型——符文类型(rune),用来表示和区分字符串中的字符。rune的本质是int32。字符串符文的个数往往才比较符合我们直观感受上的字符串长度。要计算字符串符文长度,可以先将字符串转为[]rune类型,或者利用标准库中的utf8.RuneCountInString()函数。

s := "go语言"
fmt.Println(len([]rune(s)))
// 4
count := utf8.RuneCountInString(s)
fmt.Println(count)
// 4

当用range遍历字符串时,遍历的就不再是单字节,而是单个符文rune

s := "go语言"
for _, r := range s {
    fmt.Printf("rune: %v  string: %#U\n", r, r)
}
// rune: 103  unicode: U+0067 'g'
// rune: 111  unicode: U+006F 'o'
// rune: 35821  unicode: U+8BED '语'
// rune: 35328  unicode: U+8A00 '言'

二、字符串的原理

1.字符串的解析

golang在词法解析阶段,通过扫描源代码,将双引号和反引号开头的内容分别识别为标准字符串和原始字符串:

// go/src/cmd/compile/internal/syntax/scanner.go
func (s *scanner) next() {
    ...
    switch s.ch {
    ...
    case '"':
        s.stdString()

    case '`':
        s.rawString()
  ...

然后,不断的扫描下一个字符,直到遇到另一个双引号和反引号即结束扫描。并通过string(s.segment())将解析到的字节转换为字符串,同时通过setLlit()方法将扫描到的内容类型(kind)标记为StringLit

func (s *scanner) stdString() {
    ok := true
    s.nextch()

    for {
        if s.ch == '"' {
            s.nextch()
            break
        }
        ...
        s.nextch()
    }

    s.setLit(StringLit, ok)
}
func (s *scanner) rawString() {
    ok := true
    s.nextch()

    for {
        if s.ch == '`' {
            s.nextch()
            break
        }
        ...
        s.nextch()
    }
  
    s.setLit(StringLit, ok)
}
// setLit sets the scanner state for a recognized _Literal token.
func (s *scanner) setLit(kind LitKind, ok bool) {
    s.nlsemi = true
    s.tok = _Literal
    s.lit = string(s.segment())
    s.bad = !ok
    s.kind = kind
}

2.字符串的拼接

字符串可以通过+进行拼接:

s := "go" + "lang"

在编译阶段构建抽象语法树时,等号右边的"go"+"lang"会被解析为一个字符串相加的表达式(AddStringExpr)节点,该表达式的操作opOADDSTR。相加的各部分字符串被解析为节点node列表,并赋给表达式的List字段:

// go/src/cmd/compile/internal/ir/expr.go
// An AddStringExpr is a string concatenation Expr[0] + Exprs[1] + ... + Expr[len(Expr)-1].
type AddStringExpr struct {
    miniExpr
    List     Nodes
    Prealloc *Name
}
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr {
    n := &AddStringExpr{}
    n.pos = pos
    n.op = OADDSTR
    n.List = list
    return n
}

在构建抽象语法树时,会遍历整个语法树的表达式,在遍历的过程中,识别到操作Op的类型为OADDSTR,则会调用walkAddString对字符串加法表达式进行进一步处理:

// go/src/cmd/compile/internal/walk/expr.go
func walkExpr(n ir.Node, init *ir.Nodes) ir.Node {
    ...
    n = walkExpr1(n, init)
    ...
    return n
}
func walkExpr1(n ir.Node, init *ir.Nodes) ir.Node {
    switch n.Op() {
    ...
    case ir.OADDSTR:
        return walkAddString(n.(*ir.AddStringExpr), init)
    ...
    }
    ...
}

walkAddString首先计算相加的字符串的个数c,如果相加的字符串个数小于2,则会报错。接下来会对相加的字符串字节长度求和,如果字符串总字节长度小于32,则会通过stackBufAddr()在栈空间开辟一块32字节的缓存空间。否则会在堆区开辟一个足够大的内存空间,用于存储多个字符串。

// go/src/cmd/compile/internal/walk/walk.go
const tmpstringbufsize = 32
// go/src/cmd/compile/internal/walk/expr.go
func walkAddString(n *ir.AddStringExpr, init *ir.Nodes) ir.Node {
    c := len(n.List)
    if c < 2 {
            base.Fatalf("walkAddString count %d too small", c)
    }
    buf := typecheck.NodNil()
    if n.Esc() == ir.EscNone {
        sz := int64(0)
        for _, n1 := range n.List {
            if n1.Op() == ir.OLITERAL {
                sz += int64(len(ir.StringVal(n1)))
            }
        }
        // Don't allocate the buffer if the result won't fit.
        if sz < tmpstringbufsize {
            // Create temporary buffer for result string on stack.
            buf = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
            }
	}
	// build list of string arguments
	args := []ir.Node{buf}
	for _, n2 := range n.List {
            args = append(args, typecheck.Conv(n2, types.Types[types.TSTRING]))
	}
	var fn string
	if c <= 5 {
            // small numbers of strings use direct runtime helpers.
            // note: order.expr knows this cutoff too.
            fn = fmt.Sprintf("concatstring%d", c)
	} else {
            // large numbers of strings are passed to the runtime as a slice.
            fn = "concatstrings"

            t := types.NewSlice(types.Types[types.TSTRING])
            // args[1:] to skip buf arg
            slice := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, t, args[1:])
            slice.Prealloc = n.Prealloc
            args = []ir.Node{buf, slice}
            slice.SetEsc(ir.EscNone)
	}

	cat := typecheck.LookupRuntime(fn)
	r := ir.NewCallExpr(base.Pos, ir.OCALL, cat, nil)
	r.Args = args
	r1 := typecheck.Expr(r)
	r1 = walkExpr(r1, init)
	r1.SetType(n.Type())
	return r1
}

如果用于相加的字符串个数小于等于5个,则会调用运行时的字符串拼接concatstring1-concatstring5函数。否则调用运行时的concatstrings函数,并将字符串通过切片slice的形式传入。类型检查中的typecheck.LookupRuntime(fn)方法查找到运行时的字符串拼接函数后,将其构建为一个调用表达式,操作OpOCALL,最后遍历调用表达式完成调用。concatstring1-concatstring5中的每一个调用最终都会调用concatstrings函数。

// go/src/runtime/string.go
const tmpStringBufSize = 32
type tmpBuf [tmpStringBufSize]byte
func concatstring2(buf *tmpBuf, a0, a1 string) string {
    return concatstrings(buf, []string{a0, a1})
}
func concatstring3(buf *tmpBuf, a0, a1, a2 string) string {
    return concatstrings(buf, []string{a0, a1, a2})
}
func concatstring4(buf *tmpBuf, a0, a1, a2, a3 string) string {
    return concatstrings(buf, []string{a0, a1, a2, a3})
}
func concatstring5(buf *tmpBuf, a0, a1, a2, a3, a4 string) string {
    return concatstrings(buf, []string{a0, a1, a2, a3, a4})
}

concatstring1-concatstring5已经存在一个32字节的临时缓存空间供其使用, 并通过slicebytetostringtmp函数将该缓存空间的首地址作为字符串的地址,字节长度作为字符串的长度。如果待拼接字符串的长度大于32字节,则会调用rawstring函数,该函数会在堆区为字符串分配存储空间, 并且将该存储空间的地址指向字符串。由此可以看出,字符串的底层是字节切片,且指向同一片内存区域。在分配好存储空间、完成指针指向等工作后,待拼接的字符串切片会被一个一个地通过内存拷贝copy(b,x)到分配好的存储空间b上。

// concatstrings implements a Go string concatenation x+y+z+...
func concatstrings(buf *tmpBuf, a []string) string {
    ...
    l := 0

    for i, x := range a {
        ...
        n := len(x)
        ...
        l += n
        ...
    }
    s, b := rawstringtmp(buf, l)
    for _, x := range a {
        copy(b, x)
        b = b[len(x):]
    }
    return s
}
func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) {
    if buf != nil && l <= len(buf) {
        b = buf[:l]
        s = slicebytetostringtmp(&b[0], len(b))
    } else {
        s, b = rawstring(l)
    }
    return
}

func slicebytetostringtmp(ptr *byte, n int) (str string) {
    ...
    stringStructOf(&str).str = unsafe.Pointer(ptr)
    stringStructOf(&str).len = n
    return
}
// rawstring allocates storage for a new string. The returned
// string and byte slice both refer to the same storage.
func rawstring(size int) (s string, b []byte) {
    p := mallocGC(uintptr(size), nil, false)

    stringStructOf(&s).str = p
    stringStructOf(&s).len = size

    *(*slice)(unsafe.Pointer(&b)) = slice{p, size, size}

    return
}

type stringStruct struct {
    str unsafe.Pointer
    len int
}
func stringStructOf(sp *string) *stringStruct {
    return (*stringStruct)(unsafe.Pointer(sp))
}

3.字符串的转换

尽管字符串的底层是字节数组, 但字节数组与字符串的相互转换并不是简单的指针引用,而是涉及了内存复制。当字符串大于32字节时,还需要申请堆内存。

s := "go语言"
b := []byte(s) // stringtoslicebyte
ss := string(b) // slicebytetostring

当字符串转换为字节切片时,需要调用stringtoslicebyte函数,当字符串小于32字节时,可以直接使用缓存buf,但是当字节长度大于等于32时,rawbyteslice函数需要向堆区申请足够的内存空间,然后通过内存复制将字符串拷贝到目标地址。

// go/src/runtime/string.go
func stringtoslicebyte(buf *tmpBuf, s string) []byte {
    var b []byte
    if buf != nil && len(s) <= len(buf) {
        *buf = tmpBuf{}
        b = buf[:len(s)]
    } else {
        b = rawbyteslice(len(s))
    }
    copy(b, s)
    return b
}
func rawbyteslice(size int) (b []byte) {
    cap := roundupsize(uintptr(size))
    p := mallocgc(cap, nil, false)
    if cap != uintptr(size) {
        memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size))
    }

    *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)}
    return
}
func slicebytetostring(buf *tmpBuf, ptr *byte, n int) (str string) {
    ...
    var p unsafe.Pointer
    if buf != nil && n <= len(buf) {
        p = unsafe.Pointer(buf)
    } else {
        p = mallocgc(uintptr(n), nil, false)
    }
    stringStructOf(&str).str = p
    stringStructOf(&str).len = n
    memmove(p, unsafe.Pointer(ptr), uintptr(n))
    return
}

字节切片转换为字符串时,原理同上。因此字符串和切片的转换涉及内存拷贝,在一些密集转换的场景中,需要评估转换带来的性能损耗。

总结

  • 字符串常量存储在静态存储区,其内容不可以被改变。
  • 字符串的本质是字符数组,底层是字节数组,且与字符串指向同一个内存地址。
  • 字符串的长度是字节长度,要获取直观长度,需要先转换为符文数组,或者通过utf8标准库的方法进行处理。
  • 字符串通过扫描源代码的双引号和反引号进行解析。
  • 字符串常量的拼接发生在编译时,且根据拼接字符串的个数调用了对应的运行时拼接函数。
  • 字符串变量的拼接发生在运行时。
  • 无论是字符串的拼接还是转换,当字符串长度小于32字节时,可以直接使用栈区32字节的缓存,反之,需要向堆区申请足够的存储空间。
  • 字符串与字节数组的相互转换并不是无损的指针引用,涉及到了内存复制。在转换密集的场景需要考虑转换的性能和空间损耗。

到此这篇关于golang字符串本质与原理详解的文章就介绍到这了,更多相关golang字符串 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

您可能感兴趣的文档:

--结束END--

本文标题: golang字符串本质与原理详解

本文链接: https://www.lsjlt.com/news/152928.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • golang字符串本质与原理详解
    目录一、字符串的本质1.字符串的定义2.字符串的长度3.字符与符文二、字符串的原理1.字符串的解析2.字符串的拼接3.字符串的转换总结一、字符串的本质 1.字符串的定义 golang...
    99+
    2022-11-13
  • 详解Golang中字符串的使用
    目录1、字符串编码2、字符串遍历3、字符串中的字符数4、字符串trim5、字符串连接6、字节切片转字符串1、字符串编码 在go中rune是一个unicode编码点。 我们都知道UTF...
    99+
    2022-11-11
  • 详解Python字符串原理与使用的深度总结
    目录什么是 Python 字符串ASCII 表与 Python 字符串字符字符串属性字符串方法字符串操作写在最后今天我们来学习字符串数据类型相关知识,将讨论如何声明字符串数据类型,字...
    99+
    2022-11-11
  • c语言中字符串与字符串数组详解
    目录字符串字符串输出输入字符串字符串常用方法字符串数组总结字符串 用双引号引起来的就是字符串,字符串由字符组成 字符串使用%s格式化输出 字符串以\0结尾,...
    99+
    2022-11-12
  • nodejs中转换URL字符串与查询字符串详解
    一个完整的URL字符串中,从"?"(不包括?)到"#"(如果存在#)或者到该URL字符串结束(如果不存在#)的这一部分称为查询字符串. 可以使用Query String模块中的parse方法...
    99+
    2022-06-04
    字符串 详解 nodejs
  • C语言字符函数与字符串函数详解
    目录本章重点前言1.strlen函数注意点1注意点22.strcpy注意点1:注意点2:注意点3:注意点4:总结本章重点 重点介绍处理字符和字符串的库函数的使用和注意事项 1.求字符...
    99+
    2022-11-12
  • C语言的变量与常量 字符字符串与转义字符详解
    目录一.变量1.1定义变量的方法1.2变量的分类1.3变量的使用二.常量2.1字面常量 2.2 const修饰的常变量 2.3#define定义的标识符常量2.4...
    99+
    2022-11-12
  • C++字符串的处理详解
    目录字符数组总结字符数组 双引号引起的a占两个字符,包含“\0”。 字符串处理函数 连接的时候,str2中的1替换str1中的‘\0'; 比较函数按照str...
    99+
    2022-11-12
  • Redis字符串原理的深入理解
    前言 来掘进都有两年多了一直当个小透明,今天终于发一次文章了. 最近在看 Redis,感觉收获很多,写篇博客记录一下. Redis 有五种基础数据结构:string,list,set,zset,has...
    99+
    2022-10-18
  • Golang基础教程之字符串string实例详解
    目录1、 string的定义2、string不可变3、使用string给另一个string赋值4、string重新赋值补充:字符串拼接总结1、 string的定义 Golang中的s...
    99+
    2022-11-13
  • Golang语言如何高效拼接字符串详解
    目录01、介绍02、操作符 +03、strings.Join 方法04、fmt.Sprint 方法05、bytes.Buffer 类型06、strings.Builder 类型07、...
    99+
    2022-11-12
  • Redis核心原理与实践之字符串实现原理
    本文分析Redis字符串的实现原理,内容摘自新书《Redis核心原理与实践》。这本书深入地分析了Redis常用特性的内部机制与实现方式,内容源自对Redis源码的分析,并从中总结出设...
    99+
    2022-11-12
  • Python中字符串的基本使用详解
    目录前言1 字符串索引1.1 循环索引字符2 字符使用2.1 字符串运算3 字符串切片3.1 切片方法4 字符串格式化总结前言 除了数字,Python中最常见的数据类型就是字符串,无...
    99+
    2022-11-12
  • Python字符串处理实例详解
    Python字符串处理实例详解 一、拆分含有多种分隔符的字符串 1.如何拆分含有多种分隔符的字符串 问题: 我们要把某个字符串依据分隔符号拆分不同的字段,该字符串包含多种不同的分隔符,例如: s = "...
    99+
    2022-06-04
    字符串 详解 实例
  • C++中字符串全排列算法及next_permutation原理详解
    目录前言next_permutation的使用实现全排列的两种算法1. 递归法(全排列方便理解记忆的方法,作为备用方法)2. 迭代法(next_permutation底层原理)前言 ...
    99+
    2023-02-01
    C++字符串全排列 C++ next_permutation原理 C++ next_permutation C++ 全排列
  • Python字符串的拆分与连接详解
    目录拆分字符串无参数拆分指定分隔符使用 Maxsplit 限制拆分连接和连接字符串与+运算符连接在 Python 中从列表到字符串 .join()生活中几乎没有什么保证:死亡、税收和...
    99+
    2022-11-12
  • GoLang中拼接字符串性能优化方法详解
    字符串在内存中是不可变的,放在只读内存段,因此你可以使用str[0]来访问,但是不能使用str[0]='a'来修改。 修改字符串实际上是重新放入新的地址,因此拼接字符...
    99+
    2023-02-03
    GoLang拼接字符串 GoLang拼接字符串性能优化
  • 详解python数值与字符串高级用法
    python数值与字符串高级用法 1.概述 这篇是一篇没有尽头的文章,每当过段时间,再次打开就会看到不一样的内容,有新东西在更新啊。是啊,之所以取名为高级用法,就是因为它是连载的,一...
    99+
    2022-11-11
  • Java Pattern与Matcher字符串匹配案例详解
    Pattern类定义          public final class Pattern extends Object impl...
    99+
    2022-11-12
  • C/C++字符函数和字符串函数详解————内存函数详解与模拟
    个人主页:点我进入主页 专栏分类:C语言初阶      C语言程序设计————KTV       C语言小游戏     C语言进阶 C语言刷题 欢迎大家点赞,评论,收藏。 一起努力,一起奔赴大厂。 目录 1.前言 2 .me...
    99+
    2023-10-08
    c语言
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作