广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++实现红黑树应用实例代码
  • 456
分享到

C++实现红黑树应用实例代码

2024-04-02 19:04:59 456人浏览 安东尼
摘要

红黑树的应用: 1、利用key_value对,快速查找,O(logn) Socket与客户端id之间,形成映射关系(socket, id) 内存分配管理

红黑树的应用:

1、利用key_value对,快速查找,O(logn)

  1. Socket与客户端id之间,形成映射关系(socket, id)
  2. 内存分配管理
    1. 一整块内存,不断分配小块
    2. 每分配一次,就加入到红黑树
    3. 释放的时候,在红黑树找到相应的块,然后去释放

2、利用红黑树中序遍历是顺序的特性

  1. 进程的调度
    1. 进程处于等待状态,每个进程都有等待的时间,在未来某个时刻会运行,将这些进程利用红黑树组织起来
    2. 在某个时刻,找到对应时刻的节点,然后中序遍历,就可以把该节点之前的节点全部运行到。

3、Nginx定时器

为什么使用红黑树不使用哈希表?

  • 极少情况下,需要key是有序的,如定时器

二叉排序树(bstree)

  1. 左子树 < 根 < 右子树
  2. 中序遍历结果是顺序的
  3. 极端情况下,如果顺序插入,结果就成了链表
    1. 为了解决这个问题,引入了红黑树

红黑树性质

  1. 每个节点是红色的或黑色的
  2. 根节点是黑色的
  3. 叶子节点是黑色的
  4. 红色节点的两个子节点必须是黑色的
  5. 对每个节点,该节点到其子孙节点的所有路径上的包含相同数目的黑节点(黑高相同)
    1. 最短路径就是全黑
    2. 最长路径就是黑红相间

如何证明红黑树的正确性?

  • 采用归纳法

左旋与右旋

  • 改变三个方向,六根指针

红黑树的插入:

  1. 插入节点的时候,原先的树是满足红黑树性质的
  2. 插入节点的颜色是红色更容易满足红黑树的性质
  3. 插入的节点是红色,且其父节点也是红色的时候,需要调整

插入有三种情况:

  1. 叔父节点是红色
  2. 叔父节点是黑色,且祖父节点,父节点和插入节点不是一条直线
  3. 叔父节点是黑色,且祖父节点,父节点和插入节点是一条直线

平衡二叉树

  • 内部不是color,而是一个high记录高度,如果左右子树高度相差超过1,就需要调整。

红黑树的删除:

  1. 什么是删除节点? y-> y是z的后继节点
  2. 什么是轴心节点? x是y的右子树
    1. 如果x是红色,把x变成黑色
    2. 如果x是黑色,需要进行调整

删除y节点,是什么颜色的时候需要调整?

  • 黑色需要调整,删除黑色破坏了黑高

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define RED                1
#define BLACK             2

typedef int KEY_TYPE;

typedef struct _rbtree_node {
    unsigned char color;
    struct _rbtree_node *right;
    struct _rbtree_node *left;
    struct _rbtree_node *parent;
    KEY_TYPE key;
    void *value;
} rbtree_node;

typedef struct _rbtree {
    rbtree_node *root;
    rbtree_node *nil;
} rbtree;

rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) {
    while (x->left != T->nil) {
        x = x->left;
    }
    return x;
}

rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) {
    while (x->right != T->nil) {
        x = x->right;
    }
    return x;
}

rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) {
    rbtree_node *y = x->parent;

    if (x->right != T->nil) {
        return rbtree_mini(T, x->right);
    }

    while ((y != T->nil) && (x == y->right)) {
        x = y;
        y = y->parent;
    }
    return y;
}


void rbtree_left_rotate(rbtree *T, rbtree_node *x) {

    rbtree_node *y = x->right;  // x  --> y  ,  y --> x,   right --> left,  left --> right

    x->right = y->left; //1 1
    if (y->left != T->nil) { //1 2
        y->left->parent = x;
    }

    y->parent = x->parent; //1 3
    if (x->parent == T->nil) { //1 4
        T->root = y;
    } else if (x == x->parent->left) {
        x->parent->left = y;
    } else {
        x->parent->right = y;
    }

    y->left = x; //1 5
    x->parent = y; //1 6
}


void rbtree_right_rotate(rbtree *T, rbtree_node *y) {

    rbtree_node *x = y->left;

    y->left = x->right;
    if (x->right != T->nil) {
        x->right->parent = y;
    }

    x->parent = y->parent;
    if (y->parent == T->nil) {
        T->root = x;
    } else if (y == y->parent->right) {
        y->parent->right = x;
    } else {
        y->parent->left = x;
    }

    x->right = y;
    y->parent = x;
}

void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {

    while (z->parent->color == RED) { //z ---> RED
        if (z->parent == z->parent->parent->left) {
            rbtree_node *y = z->parent->parent->right;
            if (y->color == RED) {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;

                z = z->parent->parent; //z --> RED
            } else {

                if (z == z->parent->right) {
                    z = z->parent;
                    rbtree_left_rotate(T, z);
                }

                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                rbtree_right_rotate(T, z->parent->parent);
            }
        }else {
            rbtree_node *y = z->parent->parent->left;
            if (y->color == RED) {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;

                z = z->parent->parent; //z --> RED
            } else {
                if (z == z->parent->left) {
                    z = z->parent;
                    rbtree_right_rotate(T, z);
                }

                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                rbtree_left_rotate(T, z->parent->parent);
            }
        }
        
    }

    T->root->color = BLACK;
}


void rbtree_insert(rbtree *T, rbtree_node *z) {

    rbtree_node *y = T->nil;
    rbtree_node *x = T->root;

    while (x != T->nil) {
        y = x;
        if (z->key < x->key) {
            x = x->left;
        } else if (z->key > x->key) {
            x = x->right;
        } else { //Exist
            return ;
        }
    }

    z->parent = y;
    if (y == T->nil) {
        T->root = z;
    } else if (z->key < y->key) {
        y->left = z;
    } else {
        y->right = z;
    }

    z->left = T->nil;
    z->right = T->nil;
    z->color = RED;

    rbtree_insert_fixup(T, z);
}

void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {

    while ((x != T->root) && (x->color == BLACK)) {
        if (x == x->parent->left) {

            rbtree_node *w= x->parent->right;
            if (w->color == RED) {
                w->color = BLACK;
                x->parent->color = RED;

                rbtree_left_rotate(T, x->parent);
                w = x->parent->right;
            }

            if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                w->color = RED;
                x = x->parent;
            } else {

                if (w->right->color == BLACK) {
                    w->left->color = BLACK;
                    w->color = RED;
                    rbtree_right_rotate(T, w);
                    w = x->parent->right;
                }

                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->right->color = BLACK;
                rbtree_left_rotate(T, x->parent);

                x = T->root;
            }

        } else {

            rbtree_node *w = x->parent->left;
            if (w->color == RED) {
                w->color = BLACK;
                x->parent->color = RED;
                rbtree_right_rotate(T, x->parent);
                w = x->parent->left;
            }

            if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                w->color = RED;
                x = x->parent;
            } else {

                if (w->left->color == BLACK) {
                    w->right->color = BLACK;
                    w->color = RED;
                    rbtree_left_rotate(T, w);
                    w = x->parent->left;
                }

                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->left->color = BLACK;
                rbtree_right_rotate(T, x->parent);

                x = T->root;
            }

        }
    }

    x->color = BLACK;
}

rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {

    rbtree_node *y = T->nil;
    rbtree_node *x = T->nil;

    if ((z->left == T->nil) || (z->right == T->nil)) {
        y = z;
    } else {
        y = rbtree_successor(T, z);
    }

    if (y->left != T->nil) {
        x = y->left;
    } else if (y->right != T->nil) {
        x = y->right;
    }

    x->parent = y->parent;
    if (y->parent == T->nil) {
        T->root = x;
    } else if (y == y->parent->left) {
        y->parent->left = x;
    } else {
        y->parent->right = x;
    }

    if (y != z) {
        z->key = y->key;
        z->value = y->value;
    }

    if (y->color == BLACK) {
        rbtree_delete_fixup(T, x);
    }

    return y;
}

rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {

    rbtree_node *node = T->root;
    while (node != T->nil) {
        if (key < node->key) {
            node = node->left;
        } else if (key > node->key) {
            node = node->right;
        } else {
            return node;
        }    
    }
    return T->nil;
}


void rbtree_traversal(rbtree *T, rbtree_node *node) {
    if (node != T->nil) {
        rbtree_traversal(T, node->left);
        printf("key:%d, color:%d\n", node->key, node->color);
        rbtree_traversal(T, node->right);
    }
}

int main() {

    int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15};

    rbtree *T = (rbtree *)malloc(sizeof(rbtree));
    if (T == NULL) {
        printf("malloc failed\n");
        return -1;
    }
    
    T->nil = (rbtree_node*)malloc(sizeof(rbtree_node));
    T->nil->color = BLACK;
    T->root = T->nil;

    rbtree_node *node = T->nil;
    int i = 0;
    for (i = 0;i < 20;i ++) {
        node = (rbtree_node*)malloc(sizeof(rbtree_node));
        node->key = keyArray[i];
        node->value = NULL;

        rbtree_insert(T, node);
        
    }

    rbtree_traversal(T, T->root);
    printf("----------------------------------------\n");

    for (i = 0;i < 20;i ++) {

        rbtree_node *node = rbtree_search(T, keyArray[i]);
        rbtree_node *cur = rbtree_delete(T, node);
        free(cur);

        rbtree_traversal(T, T->root);
        printf("----------------------------------------\n");
    }
  
}

总结

到此这篇关于c++实现红黑树的文章就介绍到这了,更多相关C++实现红黑树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++实现红黑树应用实例代码

本文链接: https://www.lsjlt.com/news/156082.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C++实现红黑树应用实例代码
    红黑树的应用: 1、利用key_value对,快速查找,O(logn) socket与客户端id之间,形成映射关系(socket, id) 内存分配管理 ...
    99+
    2022-11-12
  • C语言实现手写红黑树的示例代码
    目录前沿红黑树代码测试前沿 写C的红黑树前建议先看我博客这篇文章Java-红黑树 主要看原理 红黑树代码 #ifndef STUDY_RBTREE_H #define ...
    99+
    2022-11-13
  • C语言实现红黑树详细步骤+代码
    目录红黑树的概念红黑树的性质红黑树的定义与树结构插入新增结点插入后维护红黑树性质的主逻辑拆解讨论:旋转验证红黑树与AVl树的比较红黑树的应用总结红黑树的概念 红黑树,是一种二叉搜索树...
    99+
    2022-11-12
  • java实现红黑树的代码怎么写
    本篇内容介绍了“java实现红黑树的代码怎么写”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! 红黑树ja...
    99+
    2022-10-19
  • C语言实现手写Map(数组+链表+红黑树)的示例代码
    目录要求结构红黑树和链表转换策略hash使用要求 需要准备数组集合(List) 数据结构 需要准备单向链表(Linked) 数据结构 需要准备红黑树(Rbtree)数据结构 需要准备...
    99+
    2022-11-13
  • C++使用一棵红黑树同时封装出map和set实例代码
    目录一、封装第一层:仿函数取结点中的key关键码二、封装第二层:红黑树的普通迭代器1.map和set的表层迭代器实现2.底层红黑树中迭代器的实现三、封装第三层:1.set的迭代器(底...
    99+
    2023-05-17
    c++ map 红黑树 红黑树c++实现 c++红黑树
  • 利用Java实现红黑树
    目录1、红黑树的属性2、旋转3、插入4、删除5、所有代码6、演示1、红黑树的属性 红黑树是一种二分查找树,与普通的二分查找树不同的一点是,红黑树的每个节点都有一个颜色(color)属...
    99+
    2022-11-12
  • C++ RBTree红黑树的性质与实现
    目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Re...
    99+
    2023-03-08
    C++ RBTree红黑树 C++ RBTree C++ 红黑树
  • C++数据结构之红黑树的实现
    目录一、什么是红黑树二、红黑树的约定三、红黑树vsAVL四、红黑树的实现1.找到插入的位置2.控制平衡3.测试代码五、完整代码1.test.c2.RBTree.h一、什么是红黑树 红...
    99+
    2022-11-13
    C++ 数据结构 红黑树 C++ 红黑树
  • C++详细实现红黑树流程详解
    目录红黑树的概念红黑树的性质红黑树的定义与树结构插入新增结点插入后维护红黑树性质的主逻辑旋转验证红黑树与AVl树的比较红黑树的应用红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点...
    99+
    2022-11-13
  • C++ STL容器中红黑树部分模拟实现的示例分析
    这篇文章主要介绍了C++ STL容器中红黑树部分模拟实现的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、红黑树的概念红黑树(Red Black Tree...
    99+
    2023-06-21
  • C++ STL容器详解之红黑树部分模拟实现
    目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树结构 五、 红黑树的插入操作六、代码总结一、红黑树的概念 红黑树(Red Black Tree),是在计算机科学中用...
    99+
    2022-11-12
  • C++ RBTree红黑树的性质与实现方法是什么
    这篇文章主要讲解了“C++ RBTree红黑树的性质与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++ RBTree红黑树的性质与实现方法是什么”吧!一...
    99+
    2023-07-05
  • C#实现抢红包算法的示例代码
    目录二倍均值法(公平版) 线段切割法(手速版) 二倍均值法(公平版)  发出一个固定金额的红包,由若干个人来抢,需要满足哪些规则? 1.所有人抢到金额之...
    99+
    2022-11-13
  • C++实现二叉树及堆的示例代码
    1 树 树是一种非线性数据结构,它是由n个有限结点组成的具有层次关系的集合。把它叫树是因为它是根朝上,叶子朝下的 来上图瞧瞧 1.1 树的相关名词 2 二叉树 2.1 二叉树的...
    99+
    2022-11-12
  • 为何Redis使用跳表而非红黑树实现SortedSet
    目录什么是跳表跳表的意义究竟在于何处?跳表的搜索时间复杂度跳表是不是很费内存?插入和删除的时间复杂度插入删除跳表索引动态更新跳表的代码实现(Java 版)数据结构定义搜索算法插入和删...
    99+
    2022-11-12
  • C++实现AVL树的完整代码
    AVL树的介绍 AVL树是一种自平衡的二叉搜索树,它通过单旋转(single rotate)和双旋转(double rotate)的方式实现了根节点的左子树与右子树的高度差不超过1...
    99+
    2022-11-12
  • 基于红黑树插入操作原理及java实现的示例分析
    这篇文章主要介绍基于红黑树插入操作原理及java实现的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!红黑树是一种二叉平衡查找树,每个结点上有一个存储位来表示结点的颜色,可以是RED或BLACK。红黑树具有以下...
    99+
    2023-05-30
    java
  • Java实现Treap树的示例代码
    目录Treap树数据结构遍历查询增加删除完整代码Treap树 Treap树是平衡二叉搜索树的一种实现方式,但它不是完全平衡的。平衡二叉搜索树的实现方式还有AVL树、红黑树、替罪羊树、...
    99+
    2022-11-13
  • JAVA实现红包分发的示例代码
    大体思路 如果发总金额为 m的 n 个红包,先用一个长度为 n的临时数组 a 存放 n个随机双精度小数 ,然后用  sum表示数组 a 的和,每个红包的金额 代码 ...
    99+
    2022-11-12
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作