广告
返回顶部
首页 > 资讯 > 前端开发 > JavaScript >Three.js Interpolant实现动画插值
  • 565
分享到

Three.js Interpolant实现动画插值

Three.js Interpolant动画插值Three.js Interpolant 2023-02-10 18:02:07 565人浏览 泡泡鱼
摘要

目录Interpolant通过离散的采样点定义曲线插值的步骤1. 寻找要插值的位置2. 根据找到的左右两个点,进行插值Interpolant源码1. 构造器2. copySample

Interpolant

这个类主要是用来实现插值,常用于动画。

可以把这个类理解为是一个数学函数,给定一个自变量,要返回对应的函数值。只是,在我们定义函数的时候,是通过一些离散的点进行定义的。

举个例子,加入我们要定义y = x^2这条曲线,我们需要定义两个数组(即采样点和采样的值):x = [-2, -1, 0, 1, 2]y = [4, 1 ,0, 1, 4]。通过这样的定义方式,我们怎么求不是采样点中的函数值?例如上面的吱吱,我们怎么求x = 0.5时的值?这就时我们要说的“插值”。

最常见也最简单的插值方式就是线性插值,还拿上面的例子讲,就是在“连点”画图象的时候,用直线把各点连起来。

我们现在要取x=0.5,通过(0,0)和(1,1)线性插值,即求出过这两点的直线y=x,可以得到,y=0.5;同理,x=1.5时,通过(1,1)和(2,4)的直线为y=3x−2,可以得到,y=2.5

我们使用three.js提供的线性插值验证一下:

import * as THREE from 'three'
const x = [-2, -1, 0, 1, 2]
const y = [4, 1, 0, 1, 4]
const resultBuffer = new Float32Array(1)
const interpolant = new THREE.LinearInterpolant(x, y, 1, resultBuffer)
interpolant.evaluate(0.5)
// 0.5
console.log(resultBuffer[0])
interpolant.evaluate(1.5)
// 2.5
console.log(resultBuffer[0])

看不懂这段代码没有关系,接下来会慢慢解释。

通过离散的采样点定义曲线

Interpolant的构造器,需要以下这些参数:

parameterPositions:采样的位置,类比成函数就是自变量的取值

sampleValues:采样取的值,类比成函数就是自变量对应的函数值

sampleSize:每个采样点的值,分量的个数。例:sampleValues可以表示一个三维空间的坐标,有x, y, z三个分量,所以sampleSize就是三。

resultBuffer:用来获取插值的结果,长度为sampleSize时,刚好够用。

这几个参数一般有着如下的数量关系:

通过上面这些参数,我们就可以大概表示一个函数的曲线,相当于在使用“描点法”画图象时,把一些离散地采样点标注在坐标系中。

有了这些离散的点,我们就可以通过插值,求出任意点的函数值。

插值的步骤

1. 寻找要插值的位置

还拿上面的例子来说,parameterPositions = [-2, -1, 0, 1, 2],现在想要知道position = 1.5处的函数值,我们就需要在parameterPositions这个数组中找到position应该介于那两个元素之间。很显然,在这个例子中,值在元素1,2之间,下标在3,4之间。

2. 根据找到的左右两个点,进行插值

上面的例子中,我们找到的两个点分别是(1,1)和(2,,4)。可以有多种插值的方式,这取决于你的需求,我们仍然拿线性插值举例,通过(1,1)和(2,4)可以确定一条直线,然后把1.5带入即可。

Interpolant源码

Interpolant采用了一种设计模式模板方法模式

在插值的整个流程中,对于不同的插值方法来说,寻找插值位置这一操作是一样的,所以把这一个操作可以放在基类中实现。

对于不同的插值类型,都派生自Interpolant,然后实现具体的插值方法,这个方法的参数就是上面寻找到的位置。

1. 构造器

constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
    this.parameterPositions = parameterPositions;
    this._cachedIndex = 0;
    this.resultBuffer = resultBuffer !== undefined ?
        resultBuffer : new sampleValues.constructor(sampleSize);
    this.sampleValues = sampleValues;
    this.valueSize = sampleSize;
    this.settings = null;
    this.DefaultSettings_ = {};
}

基本上就是把参数中的变量进行赋值,对于resultBuffer来说,如果不在参数中传递,那么就会在构造器中进行创建。

_cachedIndex放到后面解释。

2. copySampleValue_()

如果,我们要插值的点,刚好是采样点,就没必要进行计算了,直接把采样点的结果放到resultBuffer中即可,这个方法就是在做这件事,参数就是采样点的下标。

copySampleValue_(index) {
    // copies a sample value to the result buffer
    const result = this.resultBuffer,
        values = this.sampleValues,
        stride = this.valueSize,
        offset = index * stride;
    for (let i = 0; i !== stride; ++i) {
        result[i] = values[offset + i];
    }
    return result;
}

3. interpolate_( )

interpolate_(  ) {
    throw new Error( 'call to abstract method' );
    // implementations shall return this.resultBuffer
}

这个就是具体的插值方法,但是在基类中并没有给出实现。

4. evaluate()

接下来就是多外暴露的接口,通过这个方法计算插值的结果。

这段代码用了一个不常用的语法,类似C语言中的Goto语句,可以给代码块命名,然后通过break 代码块名跳出代码块。

这段代码就是实现了上面说的插值的过程:

寻找位置

插值(调用interpolate_()方法)

整个validate_interval代码块,其实就是在找插值的位置。它的流程是:

  • 线性查找
  • 根据上一次插值的位置,向数组尾部的方向查找两个位置。(这里就是构造器中_cachedIndex的作用,记录上一次插值的位置)。如果到了数组最后仍然没找到,则到数组头部去找;如果没有到数组尾部,则直接跳出线性查找,使用二分查找。
  • 二分查找

为什么要先在上一次插值的左右位置进行线性查找呢?插值最常见的使用场景就是动画,每次会把一个时间传进来进行插值,而两次插值的间隔通常很短,分布在上一次插值的附近,可能是想通过线性查找优化性能。

evaluate(t) {
    const pp = this.parameterPositions;
    let i1 = this._cachedIndex,
        t1 = pp[i1],
        t0 = pp[i1 - 1];
    validate_interval: {
        seek: {
            let right;
            // 先进性线性查找
            linear_scan: {
                //- See Http://jsperf.com/comparison-to-undefined/3
                //- slower code:
                //-
                //-                 if ( t >= t1 || t1 === undefined ) {
                forward_scan: if (!(t < t1)) {
                    // 只向后查找两次
                    for (let giveUpAt = i1 + 2; ;) {
                        // t1 === undefined,说明已经到了数组的末尾
                        if (t1 === undefined) {
                            // t0是最后一个位置
                            // 如果t < t0
                            // 则说明向数组末尾找,没有找到
                            // 因此跳出这次寻找 接着用其他方法找
                            if (t < t0) break forward_scan;
                            // after end
                            // t >= t0
                            // 查找的结果就是最后一个点 不需要进行插值
                            i1 = pp.length;
                            this._cachedIndex = i1;
                            return this.copySampleValue_(i1 - 1);
                        }
                        // 控制向尾部查找的次数 仅查找两次
                        if (i1 === giveUpAt) break; // this loop
                        // 迭代自增
                        t0 = t1;
                        t1 = pp[++i1];
                        // t >= t0 && t < t1
                        // 找到了,t介于t0和t1之间
                        // 跳出寻找的代码块
                        if (t < t1) {
                            // we have arrived at the sought interval
                            break seek;
                        }
                    }
                    // prepare binary search on the right side of the index
                    right = pp.length;
                    break linear_scan;
                }
                //- slower code:
                //-                    if ( t < t0 || t0 === undefined ) {
                if (!(t >= t0)) {
                    // looping?
                    // 上一次查找到数组末尾了
                    // 查找数组前两个元素
                    const t1global = pp[1];
                    if (t < t1global) {
                        i1 = 2; // + 1, using the scan for the details
                        t0 = t1global;
                    }
                    // linear reverse scan
                    // 如果上一次查找到数组末尾
                    // i1就被设置成了2,查找数组前2个元素
                    for (let giveUpAt = i1 - 2; ;) {
                        // 找到头了
                        // 插值的结果就是第一个采样点的结果
                        if (t0 === undefined) {
                            // before start
                            this._cachedIndex = 0;
                            return this.copySampleValue_(0);
                        }
                        if (i1 === giveUpAt) break; // this loop
                        t1 = t0;
                        t0 = pp[--i1 - 1];
                        if (t >= t0) {
                            // we have arrived at the sought interval
                            break seek;
                        }
                    }
                    // prepare binary search on the left side of the index
                    right = i1;
                    i1 = 0;
                    break linear_scan;
                }
                // the interval is valid
                break validate_interval;
            } // linear scan
            // binary search
            while (i1 < right) {
                const mid = (i1 + right) >>> 1;
                if (t < pp[mid]) {
                    right = mid;
                } else {
                    i1 = mid + 1;
                }
            }
            t1 = pp[i1];
            t0 = pp[i1 - 1];
            // check boundary cases, again
            if (t0 === undefined) {
                this._cachedIndex = 0;
                return this.copySampleValue_(0);
            }
            if (t1 === undefined) {
                i1 = pp.length;
                this._cachedIndex = i1;
                return this.copySampleValue_(i1 - 1);
            }
        } // seek
        this._cachedIndex = i1;
        this.intervalChanged_(i1, t0, t1);
    } // validate_interval
    // 调用插值方法
    return this.interpolate_(i1, t0, t, t1);
}

上面的代码看着非常多,其实大量的代码都是在找位置。找到位置之后,调用子类实现的抽象方法。

5. LinearInterpolant实现interpolate_( )方法

class LinearInterpolant extends Interpolant {
    constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
        super(parameterPositions, sampleValues, sampleSize, resultBuffer);
    }
    interpolate_(i1, t0, t, t1) {
        const result = this.resultBuffer,
            values = this.sampleValues,
            stride = this.valueSize,
            offset1 = i1 * stride,
            offset0 = offset1 - stride,
            weight1 = (t - t0) / (t1 - t0),
            weight0 = 1 - weight1;
        for (let i = 0; i !== stride; ++i) {
            result[i] =
                values[offset0 + i] * weight0 +
                values[offset1 + i] * weight1;
        }
        return result;
    }
}

总结

Three.js提供了内置的插值类Interpolant,采用了模板方法的设计模式。对于不同的插值方式,继承基类Interpolant,然后实现抽象方法interpolate_

计算插值的步骤就是先找到插值的位置,然后把插值位置两边的采样点传递给interpolate_()方法,不同的插值方式会override该方法,以产生不同的结果。

推导了线性插值的公式。

以上就是Three.js Interpolant实现动画插值的详细内容,更多关于Three.js Interpolant动画插值的资料请关注编程网其它相关文章!

--结束END--

本文标题: Three.js Interpolant实现动画插值

本文链接: https://www.lsjlt.com/news/195619.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • Three.js Interpolant实现动画插值
    目录Interpolant通过离散的采样点定义曲线插值的步骤1. 寻找要插值的位置2. 根据找到的左右两个点,进行插值Interpolant源码1. 构造器2. copySample...
    99+
    2023-02-10
    Three.js Interpolant动画插值 Three.js Interpolant
  • WebGL中three.js怎么实现物体的阴影动画效果
    小编给大家分享一下WebGL中three.js怎么实现物体的阴影动画效果,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!实现物体的...
    99+
    2022-10-19
  • jQuery插件实现简单动画
    本篇内容主要讲解“jQuery插件实现简单动画”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“jQuery插件实现简单动画”吧!jQuery 提供了一系列的动画方...
    99+
    2022-10-19
  • 使用three.js怎么实现一个露珠滴落动画效果
    本篇文章为大家展示了使用three.js怎么实现一个露珠滴落动画效果,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。首先将相机换成正交相机,再将平面的长度调整为2,使其填满屏幕class R...
    99+
    2023-06-06
  • 用Python实现Newton插值法
    目录1. n阶差商实现2. 牛顿插值实现3.完整Python代码1. n阶差商实现 def diff(xi,yi,n): """ param xi:插值节点xi ...
    99+
    2022-11-12
  • 用Python实现插值算法
            数模比赛中,常常需要对数据进行处理和分析,但有时候数据不多,就需要一些方法&ldquo...
    99+
    2022-11-13
  • XamarinAndroid组件中设置动画的设置插值器怎么用
    这篇文章给大家分享的是有关XamarinAndroid组件中设置动画的设置插值器怎么用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。为动画设置插值器,可以使用BaseItemAnimator抽象类中的SetInt...
    99+
    2023-06-05
  • 如何实现基于three.js的3D粒子动效
    小编给大家分享一下如何实现基于three.js的3D粒子动效,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、背景粒子特效是为模拟现实中的水、火、雾、气等效果由各...
    99+
    2023-06-02
  • Three.js实现脸书元宇宙3D动态Logo效果
    目录背景什么是元宇宙实现效果试炼一:THREE.TorusGeometry试炼二:THREE.TorusKnotGeometry试炼三:THREE.TubeGeometry试炼四:B...
    99+
    2022-11-12
  • Android动画 实现开关按钮动画(属性动画之平移动画)实例代码
    Android动画 实现开关按钮动画(属性动画之平移动画),最近做项目,根据项目需求,有一个这样的功能,实现类似开关的动画效果,经过自己琢磨及上网查找资料,终于解决了,这里就记...
    99+
    2022-06-06
    开关 属性 按钮 Android
  • JavaScript如何实现字符串插值
    这篇文章主要为大家展示了“JavaScript如何实现字符串插值”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“JavaScript如何实现字符串插值”这篇文章吧...
    99+
    2022-10-19
  • python实现图像最近邻插值
    目录引言:1、最近邻插值算法思想2、python实现最邻近插值引言: 最近邻插值Nearest Neighbour Interpolate算法是图像处理中普遍使用的图像尺寸缩放算法,...
    99+
    2022-11-13
  • python实现线性插值的示例
    目录线性插值python实现线性插值numpy.interpscipy.interpolate.interp1d线性插值 插值:是根据已知的数据序列(可以理解为你坐标中一系列离散的点...
    99+
    2022-12-08
    python线性插值 python线性插值
  • javascript怎么实现IDW插值算法
    IDW(Inverse Distance Weighting)是一种空间插值方法,其核心思想是基于现有数据点之间的空间距离和数据值之间的权重关系,对未知位置的数据进行估计或推断。该方法在GIS、遥感、环境科学等领域广泛应用,是一种简单而有效...
    99+
    2023-05-14
  • WPF实现动画效果(六)之路径动画
    WPF动画效果系列 WPF实现动画效果(一)之基本概念 WPF实现动画效果(二)之From/To/By 动画 WPF实现动画效果(三)之时间线(TimeLine) WPF实现动画效果...
    99+
    2022-11-13
  • JavaScript 实现页面滚动动画
    目录创建布局添加 CSS 样式用 JavaScript 操作元素获取目标元素默认淡出所有目标元素检测元素是否在视窗内给元素添加类名完善示例利用节流阀提高性能在做前端 UI 效果时,让...
    99+
    2022-11-12
  • javascript实现缓动动画效果
    本文实例为大家分享了javascript实现缓动动画效果的具体代码,供大家参考,具体内容如下 实现思路 1、主要使用setInterval定时函数 2、给需要动画的元素添加绝对定位和...
    99+
    2022-11-12
  • 如何使用Python实现Newton插值法
    小编给大家分享一下如何使用Python实现Newton插值法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1. n阶差商实现def diff(xi,yi...
    99+
    2023-06-14
  • CSS3动画如何实现
    本篇内容主要讲解“CSS3动画如何实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“CSS3动画如何实现”吧!我们先来看看示例 注意: 这里呢,我们用 my...
    99+
    2022-10-19
  • 如何实现Flutter动画
    这篇文章主要为大家展示了“如何实现Flutter动画”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何实现Flutter动画”这篇文章吧。动画中的三大核心为了能够实现动画效果,必须提供下面的三个...
    99+
    2023-06-04
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作