iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++中内存池的简单原理及实现详解
  • 514
分享到

C++中内存池的简单原理及实现详解

C++内存池原理C++实现内存池C++内存池 2023-03-01 11:03:34 514人浏览 八月长安
摘要

目录为什么要用内存池内存池原理内存池设计内存池实现为什么要用内存池 c++程序默认的内存管理(new,delete,malloc,free)会频繁地在堆上分配和释放内存,导致性能的损

为什么要用内存池

c++程序默认的内存管理(new,delete,malloc,free)会频繁地在堆上分配和释放内存,导致性能的损失,产生大量的内存碎片,降低内存的利用率。默认的内存管理因为被设计的比较通用,所以在性能上并不能做到极致。

因此,很多时候需要根据业务需求设计专用内存管理器,便于针对特定数据结构和使用场合的内存管理,比如:内存池。

内存池原理

内存池的思想是,在真正使用内存之前,预先申请分配一定数量、大小预设的内存块留作备用。当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存,当内存释放后就回归到内存块留作后续的复用,使得内存使用效率得到提升,一般也不会产生不可控制的内存碎片。

内存池设计

算法原理:

1.预申请一个内存区chunk,将内存中按照对象大小划分成多个内存块block

2.维持一个空闲内存块链表,通过指针相连,标记头指针为第一个空闲块

3.每次新申请一个对象的空间,则将该内存块从空闲链表中去除,更新空闲链表头指针

4.每次释放一个对象的空间,则重新将该内存块加到空闲链表头

5.如果一个内存区占满了,则新开辟一个内存区,维持一个内存区的链表,同指针相连,头指针指向最新的内存区,新的内存块从该区内重新划分和申请

如图所示:

内存池实现

memory_pool.hpp

#ifndef _MEMORY_POOL_H_
#define _MEMORY_POOL_H_

#include <stdint.h>
#include <mutex>

template<size_t BlockSize, size_t BlockNum = 10>
class MemoryPool
{
public:
	MemoryPool()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// init empty memory pointer
		free_block_head = NULL;
		mem_chunk_head = NULL;
	}

	~MemoryPool()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// destruct automatically
		MemChunk* p;
		while (mem_chunk_head)
		{
			p = mem_chunk_head->next;
			delete mem_chunk_head;
			mem_chunk_head = p;
		}
	}

	void* allocate()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// allocate one object memory

		// if no free block in current chunk, should create new chunk
		if (!free_block_head)
		{
			// malloc mem chunk
			MemChunk* new_chunk = new MemChunk;
			new_chunk->next = NULL;

			// set this chunk's first block as free block head
			free_block_head = &(new_chunk->blocks[0]);

			// link the new chunk's all blocks
			for (int i = 1; i < BlockNum; i++)
				new_chunk->blocks[i - 1].next = &(new_chunk->blocks[i]);
			new_chunk->blocks[BlockNum - 1].next = NULL; // final block next is NULL
			
			if (!mem_chunk_head)
				mem_chunk_head = new_chunk;
			else
			{
				// add new chunk to chunk list
				mem_chunk_head->next = new_chunk;
				mem_chunk_head = new_chunk;
			}
		}

		// allocate the current free block to the object
		void* object_block = free_block_head;
		free_block_head = free_block_head->next; 

		return object_block;
	}

	void* allocate(size_t size)
	{
		std::lock_guard<std::mutex> lk(array_mtx); // avoid race condition for continuous memory

		// calculate objects num
		int n = size / BlockSize;

		// allocate n objects in continuous memory
		
		// FIXME: make sure n > 0
		void* p = allocate();

		for (int i = 1; i < n; i++)
			allocate();

		return p;
	}

	void deallocate(void* p)
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// free object memory
		FreeBlock* block = static_cast<FreeBlock*>(p);
		block->next = free_block_head; // insert the free block to head
		free_block_head = block;
	}

private:
	// free node block, every block size exactly can contain one object
	struct FreeBlock
	{
		unsigned char data[BlockSize];
		FreeBlock* next;
	};

	FreeBlock* free_block_head;

	// memory chunk, every chunk contains blocks number with fixed BlockNum
	struct MemChunk
	{
		FreeBlock blocks[BlockNum];
		MemChunk* next;
	};

	MemChunk* mem_chunk_head;

	// thread safe related
	std::mutex mtx;
	std::mutex array_mtx;
};

#endif // !_MEMORY_POOL_H_

main.cpp

#include <iOStream>
#include "memory_pool.hpp"

class MyObject
{
public:
	MyObject(int x): data(x)
	{
		//std::cout << "contruct object" << std::endl;
	}

	~MyObject()
	{
		//std::cout << "destruct object" << std::endl;
	}

	int data;

	// override new and delete to use memory pool
	void* operator new(size_t size);
	void operator delete(void* p);
	void* operator new[](size_t size);
	void operator delete[](void* p);
};

// define memory pool with block size as class size
MemoryPool<sizeof(MyObject), 3> gMemPool;


void* MyObject::operator new(size_t size)
{
	//std::cout << "new object space" << std::endl;
	return gMemPool.allocate();
}

void MyObject::operator delete(void* p)
{
	//std::cout << "free object space" << std::endl;
	gMemPool.deallocate(p);
}

void* MyObject::operator new[](size_t size)
{
	// TODO: not supported continuous memoery pool for now
	//return gMemPool.allocate(size);
	return NULL;
}
void MyObject::operator delete[](void* p)
{
	// TODO: not supported continuous memoery pool for now
	//gMemPool.deallocate(p);
}

int main(int arGC, char* argv[])
{
	MyObject* p1 = new MyObject(1);
	std::cout << "p1 " << p1 << " " << p1->data<< std::endl;

	MyObject* p2 = new MyObject(2);
	std::cout << "p2 " << p2 << " " << p2->data << std::endl;
	delete p2;

	MyObject* p3 = new MyObject(3);
	std::cout << "p3 " << p3 << " " << p3->data << std::endl;

	MyObject* p4 = new MyObject(4);
	std::cout << "p4 " << p4 << " " << p4->data << std::endl;

	MyObject* p5 = new MyObject(5);
	std::cout << "p5 " << p5 << " " << p5->data << std::endl;

	MyObject* p6 = new MyObject(6);
	std::cout << "p6 " << p6 << " " << p6->data << std::endl;

	delete p1;
	delete p2;
	//delete p3;
	delete p4;
	delete p5;
	delete p6;

	getchar();
	return 0;
}

运行结果

p1 00000174BEDE0440 1
p2 00000174BEDE0450 2
p3 00000174BEDE0450 3
p4 00000174BEDE0460 4
p5 00000174BEDD5310 5
p6 00000174BEDD5320 6

可以看到内存地址是连续,并且回收一个节点后,依然有序地开辟内存
对象先开辟内存再构造,先析构再释放内存

注意

  • 在内存分配和释放的环节需要加来保证线程安全
  • 还没有实现对象数组的分配和释放

到此这篇关于C++中内存池的简单原理及实现详解的文章就介绍到这了,更多相关C++内存池内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++中内存池的简单原理及实现详解

本文链接: https://www.lsjlt.com/news/197976.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • C++中内存池的简单原理及实现详解
    目录为什么要用内存池内存池原理内存池设计内存池实现为什么要用内存池 C++程序默认的内存管理(new,delete,malloc,free)会频繁地在堆上分配和释放内存,导致性能的损...
    99+
    2023-03-01
    C++内存池原理 C++实现内存池 C++内存池
  • C++内存池的简单实现
    目录一、内存池基础知识1、什么是内存池1.1 池化技术1.2 内存池2、内存池的作用2.1 效率问题2.2 内存碎片3、内存池技术的演进二、简易内存池原理1、整体设计1.1 内存池结...
    99+
    2024-04-02
  • 详解利用C语言如何实现简单的内存池
    前言 在编程过程中,尤其是对于C语言开发者,其实编程就是在使用内存,不停地变化内存中的数据。当我们想开辟一片新的内存使用时,就会使用malloc实现。但是通过查阅很多资料,发现频繁的...
    99+
    2024-04-02
  • C++内存管理之简易内存池的实现
    目录什么是内存池?它的实现过程为:初步实现使用嵌入指针改进更简化:static allocatormacor for static allocator什么是内存池? 频繁的调用 ma...
    99+
    2024-04-02
  • C++中内存池的原理及实现方法是什么
    这篇文章主要讲解了“C++中内存池的原理及实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++中内存池的原理及实现方法是什么”吧!为什么要用内存池C++程序默认的内存管理(ne...
    99+
    2023-07-05
  • C++内存管理中简易内存池怎么实现
    这篇文章主要介绍“C++内存管理中简易内存池怎么实现”,在日常操作中,相信很多人在C++内存管理中简易内存池怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++内存管理中简易内存池怎么实现”的疑惑有所...
    99+
    2023-06-22
  • C语言如何实现简单的内存池
    本篇内容主要讲解“C语言如何实现简单的内存池”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C语言如何实现简单的内存池”吧!前言在编程过程中,尤其是对于C语言开发者,其实编程就是在使用内存,不停地...
    99+
    2023-06-20
  • C++中高性能内存池的实现详解
    目录一、概述二、主函数设计三、模板链表栈四、设计内存池五、实现六、与 std::vector 的性能对比总结一、概述 在 C/C++ 中,内存管理是一个非常棘手的问题,我们在编写一个...
    99+
    2022-11-13
    C++高性能内存池 C++ 内存池
  • 详解Vue中双向绑定原理及简单实现
    目录监听器订阅器双向绑定构造函数编译器(1)Compile类(2)node2Fragment函数(3)compile函数总结效果完整代码代码缺陷监听器 vue实现双向绑定时,首先要实...
    99+
    2023-05-19
    Vue双向绑定原理 Vue实现双向绑定 Vue双向绑定
  • C++如何实现定长内存池详解
    目录1. 池化技术2. 内存池概念2.1 内存碎片3. 实现定长内存池3.1 定位new表达式(placement-new)3.2 完整实现总结1. 池化技术 池是在计算机技术中经...
    99+
    2024-04-02
  • C++实现简单的ls命令及其原理
    目录思维导图准备工作对控制参数的处理对dir参数的处理函数实现实现完整代码总结思维导图 准备工作 对控制参数的处理 一共有 7 个可选参数,分别是-a、-l、-R、-t、-r、-i...
    99+
    2023-05-19
    C++ ls命令格式 C++ ls命令
  • C++ 内存管理中的内存池
    内存池是一种 c++++ 技术,用于管理频繁分配和释放的特定大小对象。它使用预分配的内存块,提供比标准内存分配器更高的性能,特别是针对高度并发的应用程序。 C++ 内存管理中的内存池 ...
    99+
    2024-05-01
    内存池 c++ 内存管理 c++
  • JavaScript中Promise的简单使用及其原理详解
    Promise是ES6最重要的特性之一,今天来系统且细致的研究一下Promise的用法以及原理。 按照我往常的理解,Promise是一个构造函数,有all、resolve、rejec...
    99+
    2023-03-23
    JavaScript Promise原理 JavaScript Promise使用 JavaScript Promise
  • C++设计一个简单内存池的全过程
    什么是内存池??? 通常我们用new或malloc来分配内存的话,由于申请的大小不确定,所以当频繁的使用时会造成内存碎片和效率的降低。为了克服这种问题我们提出了内存池的概念。内存池是...
    99+
    2024-04-02
  • C++内存池的实现方法
    这篇文章主要讲解了“C++内存池的实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++内存池的实现方法”吧!目录一、内存池基础知识什么是内存池1 池化技术2 内存池内存池的作用1 效...
    99+
    2023-06-20
  • Golang内存管理简单技巧详解
    目录引言预先分配切片结构中的顺序字段使用 map[string]struct{} 而不是 map[string]bool引言 除非您正在对服务进行原型设计,否则您可能会关心应用程序的...
    99+
    2024-04-02
  • java 中Collection存储器详解及简单实例
    本篇仅为了巩固一下基础,回忆一下存储的这两个常用的东东…一、Collection存储对象可以考虑:①数组②结合数组存储对象的特点:Student[] stu = new Student[20]; stu[0] = new Stutdent(...
    99+
    2023-05-31
    java collection ava
  • C++手写内存池的案例详解
    引言 使用new expression为类的多个实例分配动态内存时,cookie导致内存利用率可能不高,此时我们通过实现类的内存池来降低overhead。从不成熟到巧妙优化的内存池,...
    99+
    2024-04-02
  • 线程池的原理与实现详解
    一. 线程池的简介通常我们使用多线程的方式是,需要时创建一个新的线程,在这个线程里执行特定的任务,然后在任务完成后退出。这在一般的应用里已经能够满足我们应用的需求,毕竟我们并不是什么...
    99+
    2022-11-15
    线程池 原理
  • C++高并发内存池的实现
    目录项目介绍内存池介绍定长内存池的实现高并发内存池整体框架设计threadcachethreadcache整体设计threadcache哈希桶映射对齐规则threadcacheTLS...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作