iis服务器助手广告广告
返回顶部
首页 > 资讯 > 移动开发 >Android匿名内存深入分析
  • 283
分享到

Android匿名内存深入分析

Android匿名内存Android内存 2023-03-15 11:03:01 283人浏览 八月长安
摘要

目录Android 匿名内存解析MemoryFile使用Service端Client端AshMemory 创建原理AshMemory 读写linux共享机制简介总结Android 匿

Android 匿名内存解析

有了binder机制为什么还需要匿名内存来实现IPC呢?我觉得很大的原因就是binder传输是有大小限制的,不说应用层的限制。在驱动中binder的传输大小被限制在了4M,分享一张图片可能就超过了这个限制。匿名内存的主要解决思路就是通过binder传输文件描述符,使得两个进程都能访问同一个地址来实现共享。

MemoryFile使用

在平常开发中android提供了MemoryFile来实现匿名内存。看下最简单的实现。

Service端

​
const val GET_ASH_MEMORY = 1000
class MyService : Service() {
    val ashData = "AshDemo".toByteArray()
    override fun onBind(intent: Intent): IBinder {
        return object : Binder() {
            override fun onTransact(code: Int, data: Parcel, reply: Parcel?, flags: Int): Boolean {
                when(code){
                    GET_ASH_MEMORY->{//收到客户端请求的时候会烦
                        val descriptor = createMemoryFile()
                        reply?.writeParcelable(descriptor, 0)
                        reply?.writeInt(ashData.size)
                        return true
                    }
                    else->{
                        return super.onTransact(code, data, reply, flags)
                    }
                }
            }
        }
    }
    private fun createMemoryFile(): ParcelFileDescriptor? {
        val file = MemoryFile("AshFile", 1024)//创建MemoryFile
        val descriptORMethod = file.javaClass.getDeclaredMethod("getFileDescriptor")
        val fd=descriptorMethod.invoke(file)//反射拿到fd
        file.writeBytes(ashData, 0, 0,ashData.size)//写入字符串
        return ParcelFileDescriptor.dup(fd as FileDescriptor?)//返回一个封装的fd
    }
}

Server的功能很简单收到GET_ASH_MEMORY请求的时候创建一个MemoryFile,往里写入一个字符串的byte数组,然后将fd和字符长度写入reply中返回给客户端。

Client端

​
class MainActivity : AppCompatActivity() {
    val connect = object :ServiceConnection{
        override fun onServiceConnected(name: ComponentName?, service: IBinder?) {
            val reply = Parcel.obtain()
            val sendData = Parcel.obtain()
            service?.transact(GET_ASH_MEMORY, sendData, reply, 0)//传输信号GET_ASH_MEMORY
            val pfd = reply.readParcelable<ParcelFileDescriptor>(javaClass.classLoader)
            val descriptor = pfd?.fileDescriptor//拿到fd
            val size = reply.readInt()//拿到长度
            val input = FileInputStream(descriptor)
            val bytes = input.readBytes()
            val message = String(bytes, 0, size, Charsets.UTF_8)//生成string
            Toast.makeText(this@MainActivity,message,Toast.LENGTH_SHORT).show()
        }
​
        override fun onServiceDisconnected(name: ComponentName?) {
        }
​
    }
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)
        findViewById<TextView>(R.id.intent).setOnClickListener {
          //启动服务
            bindService(Intent(this,MyService::class.java),connect, Context.BIND_AUTO_CREATE)
        }
    }
}

客户端也很简单,启动服务,发送一个获取MemoryFile的请求,然后通过reply拿到fd和长度,用FileInputStream读取fd中的内容,最后通过toast可以验证这个message已经拿到了。

AshMemory 创建原理

    public MemoryFile(String name, int length) throws IOException {
        try {
            mSharedMemory = SharedMemory.create(name, length);
            mMapping = mSharedMemory.mapReadWrite();
        } catch (ErrnoException ex) {
            ex.rethrowAsIOException();
        }
    }

MemoryFile就是对SharedMemory的一层封装,具体的工能都是SharedMemory实现的。看SharedMemory的实现。

    public static @NonNull SharedMemory create(@Nullable String name, int size)
            throws ErrnoException {
        if (size <= 0) {
            throw new IllegalArgumentException("Size must be greater than zero");
        }
        return new SharedMemory(nCreate(name, size));
    }
  private static native FileDescriptor nCreate(String name, int size) throws ErrnoException;

通过一个JNI获得fd,从这里可以推断出java层也只是一个封装,拿到的已经是创建好的fd。

//frameworks/base/core/jni/android_os_SharedMemory.cpp
jobject SharedMemory_nCreate(JNIEnv* env, jobject, jstring jname, jint size) {
    const char* name = jname ? env->GetStringUTFChars(jname, nullptr) : nullptr;
    int fd = ashmem_create_region(name, size);//创建匿名内存块
    int err = fd < 0 ? errno : 0;
    if (name) {
        env->ReleaseStringUTFChars(jname, name);
    }
    if (fd < 0) {
        jniThrowErrnoException(env, "SharedMemory_create", err);
        return nullptr;
    }
    jobject jifd = jniCreateFileDescriptor(env, fd);//创建java fd返回
    if (jifd == nullptr) {
        close(fd);
    }
    return jifd;
}

通过cutils中的ashmem_create_region函数实现的创建

//system/core/libcutils/ashmem-dev.cpp
int ashmem_create_region(const char *name, size_t size)
{
    int ret, save_errno;
​
    if (has_memfd_support()) {//老版本兼容用
        return memfd_create_region(name ? name : "none", size);
    }
​
    int fd = __ashmem_open();//打开Ashmem驱动
    if (fd < 0) {
        return fd;
    }
    if (name) {
        char buf[ASHMEM_NAME_LEN] = {0};
        strlcpy(buf, name, sizeof(buf));
        ret = TEMP_FAILURE_RETRY(ioctl(fd, ASHMEM_SET_NAME, buf));//通过ioctl设置名字
        if (ret < 0) {
            Goto error;
        }
    }
    ret = TEMP_FAILURE_RETRY(ioctl(fd, ASHMEM_SET_SIZE, size));//通过ioctl设置大小
    if (ret < 0) {
        goto error;
    }
    return fd;
error:
    save_errno = errno;
    close(fd);
    errno = save_errno;
    return ret;
}
​

标准的驱动交互操作

1.open打开驱动

2.通过ioctl与驱动进行交互

下面看下open的流程

static int __ashmem_open()
{
    int fd;
​
    pthread_mutex_lock(&__ashmem_lock);
    fd = __ashmem_open_locked();
    pthread_mutex_unlock(&__ashmem_lock);
​
    return fd;
}
​

static int __ashmem_open_locked()
{
    static const std::string ashmem_device_path = get_ashmem_device_path();//拿到Ashmem驱动路径
    if (ashmem_device_path.empty()) {
        return -1;
    }
    int fd = TEMP_FAILURE_RETRY(open(ashmem_device_path.c_str(), O_RDWR | O_CLOEXEC));
    return fd;
}

回到MemoryFile的构造函数中,拿到了驱动的fd之后调用了mapReadWrite

    public @NonNull ByteBuffer mapReadWrite() throws ErrnoException {
        return map(OsConstants.PROT_READ | OsConstants.PROT_WRITE, 0, mSize);
    }
 public @NonNull ByteBuffer map(int prot, int offset, int length) throws ErrnoException {
        checkOpen();
        validateProt(prot);
        if (offset < 0) {
            throw new IllegalArgumentException("Offset must be >= 0");
        }
        if (length <= 0) {
            throw new IllegalArgumentException("Length must be > 0");
        }
        if (offset + length > mSize) {
            throw new IllegalArgumentException("offset + length must not exceed getSize()");
        }
        long address = Os.mmap(0, length, prot, OsConstants.MAP_SHARED, mFileDescriptor, offset);//调用了系统的mmap
        boolean readOnly = (prot & OsConstants.PROT_WRITE) == 0;
        Runnable unmapper = new Unmapper(address, length, mMemoryReGIStration.acquire());
        return new DirectByteBuffer(length, address, mFileDescriptor, unmapper, readOnly);
    }
​

到这里就有一个疑问,Linux就有共享内存,android为什么要自己搞一套,只能看下Ashmemory驱动的实现了。

驱动第一步看init和file_operations

static int __init ashmem_init(void)
{
    int ret = -ENOMEM;
​
    ashmem_area_cachep = kmem_cache_create("ashmem_area_cache",
                           sizeof(struct ashmem_area),
                           0, 0, NULL);//创建
    if (!ashmem_area_cachep) {
        pr_err("failed to create slab cache\n");
        goto out;
    }
​
    ashmem_range_cachep = kmem_cache_create("ashmem_range_cache",
                        sizeof(struct ashmem_range),
                        0, SLAB_RECLAIM_ACCOUNT, NULL);//创建
    if (!ashmem_range_cachep) {
        pr_err("failed to create slab cache\n");
        goto out_free1;
    }
​
    ret = misc_register(&ashmem_misc);//注册为了一个misc设备
    ........
    return ret;
}

创建了两个内存分配器ashmem_area_cachep和ashmem_range_cachep用于分配ashmem_area和ashmem_range

//common/drivers/staging/android/ashmem.c
static const struct file_operations ashmem_fops = {
    .owner = THIS_MODULE,
    .open = ashmem_open,
    .release = ashmem_release,
    .read_iter = ashmem_read_iter,
    .llseek = ashmem_llseek,
    .mmap = ashmem_mmap,
    .unlocked_ioctl = ashmem_ioctl,
#ifdef CONFIG_COMPAT
    .compat_ioctl = compat_ashmem_ioctl,
#endif
#ifdef CONFIG_PROC_FS
    .show_fdinfo = ashmem_show_fdinfo,
#endif
};
​

open调用的就是ashmem_open

static int ashmem_open(struct inode *inode, struct file *file)
{
    struct ashmem_area *asma;
    int ret;
​
    ret = generic_file_open(inode, file);
    if (ret)
        return ret;
​
    asma = kmem_cache_zalloc(ashmem_area_cachep, GFP_KERNEL);//分配一个ashmem_area
    if (!asma)
        return -ENOMEM;
​
    INIT_LIST_HEAD(&asma->unpinned_list);//初始化unpinned_list
    memcpy(asma->name, ASHMEM_NAME_PREFIX, ASHMEM_NAME_PREFIX_LEN);//初始化一个名字
    asma->prot_mask = PROT_MASK;
    file->private_data = asma;
    return 0;
}

ioctl设置名字和长度调用的就是ashmem_ioctl

static long ashmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
    struct ashmem_area *asma = file->private_data;
    long ret = -ENOTTY;
​
    switch (cmd) {
    case ASHMEM_SET_NAME:
        ret = set_name(asma, (void __user *)arg);
        break;
    case ASHMEM_SET_SIZE:
        ret = -EINVAL;
        mutex_lock(&ashmem_mutex);
        if (!asma->file) {
            ret = 0;
            asma->size = (size_t)arg;
        }
        mutex_unlock(&ashmem_mutex);
        break;
    }
  ........
  }

实现也都很简单就是改变了一下asma里的值。接下来就是重点mmap了,具体是怎么分配内存的。

​static int ashmem_mmap(struct file *file, struct vm_area_struct *vma)
{
    static struct file_operations vmfile_fops;
    struct ashmem_area *asma = file->private_data;
    int ret = 0;
​
    mutex_lock(&ashmem_mutex);
​
    
    if (!asma->size) {//判断设置了size
        ret = -EINVAL;
        goto out;
    }
​
    
    if (vma->vm_end - vma->vm_start > PAGE_ALIGN(asma->size)) {//判断大小是否超过了虚拟内存
        ret = -EINVAL;
        goto out;
    }
​
    
    if ((vma->vm_flags & ~calc_vm_prot_bits(asma->prot_mask, 0)) &
        calc_vm_prot_bits(PROT_MASK, 0)) {//权限判断
        ret = -EPERM;
        goto out;
    }
    vma->vm_flags &= ~calc_vm_may_flags(~asma->prot_mask);
​
    if (!asma->file) {//是否创建过临时文件,没创建过进入
        char *name = ASHMEM_NAME_DEF;
        struct file *vmfile;
        struct inode *inode;
​
        if (asma->name[ASHMEM_NAME_PREFIX_LEN] != '\0')
            name = asma->name;
​
        
        vmfile = shmem_file_setup(name, asma->size, vma->vm_flags);//调用linux函数在tmpfs中创建临时文件
        if (IS_ERR(vmfile)) {
            ret = PTR_ERR(vmfile);
            goto out;
        }
        vmfile->f_mode |= FMODE_LSEEK;
        inode = file_inode(vmfile);
        lockdep_set_class(&inode->i_rwsem, &backing_shmem_inode_class);
        asma->file = vmfile;
        
        if (!vmfile_fops.mmap) {//设置了临时文件的文件操作,防止有其他程序mmap这个临时文件
            vmfile_fops = *vmfile->f_op;
            vmfile_fops.mmap = ashmem_vmfile_mmap;
            vmfile_fops.get_unmapped_area =
                    ashmem_vmfile_get_unmapped_area;
        }
        vmfile->f_op = &vmfile_fops;
    }
    get_file(asma->file);
​
    
    if (vma->vm_flags & VM_SHARED) {//这块内存是不是需要跨进程
        ret = shmem_zero_setup(vma);//设置文件
        if (ret) {
            fput(asma->file);
            goto out;
        }
    } else {
    
        vma_set_anonymous(vma);
    }
​
    vma_set_file(vma, asma->file);
    
    fput(asma->file);
​
out:
    mutex_unlock(&ashmem_mutex);
    return ret;
}

函数很长,但是思路还是很清晰的。创建临时文件,设置文件操作。其中调用的都是linux的系统函数了,看真正设置的shmem_zero_setup函数

int shmem_zero_setup(struct vm_area_struct *vma)
{
    struct file *file;
    loff_t size = vma->vm_end - vma->vm_start;
​
    
    file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
    if (IS_ERR(file))
        return PTR_ERR(file);
​
    if (vma->vm_file)
        fput(vma->vm_file);
    vma->vm_file = file;
    vma->vm_ops = &shmem_vm_ops;//很重要的操作将这块虚拟内存的vm_ops设置为shmem_vm_ops
​
    if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
            ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
            (vma->vm_end & HPAGE_PMD_MASK)) {
        khugepaged_enter(vma, vma->vm_flags);
    }
​
    return 0;
}
static const struct vm_operations_struct shmem_vm_ops = {
    .fault      = shmem_fault,//Linux的共享内存实现的基础
    .map_pages  = filemap_map_pages,
#ifdef CONFIG_NUMA
    .set_policy     = shmem_set_policy,
    .get_policy     = shmem_get_policy,
#endif
};

到这里共享内存的初始化就结束了。

AshMemory 读写

​//frameworks/base/core/java/android/os/MemoryFile.java
public void writeBytes(byte[] buffer, int srcOffset, int destOffset, int count)
            throws IOException {
        beginAccess();
        try {
            mMapping.position(destOffset);
            mMapping.put(buffer, srcOffset, count);
        } finally {
            endAccess();
        }
    }
    private void beginAccess() throws IOException {
        checkActive();
        if (mAllowPurging) {
            if (native_pin(mSharedMemory.getFileDescriptor(), true)) {
                throw new IOException("MemoryFile has been purged");
            }
        }
    }
​
    private void endAccess() throws IOException {
        if (mAllowPurging) {
            native_pin(mSharedMemory.getFileDescriptor(), false);
        }
    }

其中beginAccess和endAccess是对应的。调用的都是native_pin是一个native函数,一个参数是true一个是false。pin的作用就是住这块内存不被系统回收,当不使用的时候就解锁。

static jboolean android_os_MemoryFile_pin(JNIEnv* env, jobject clazz, jobject fileDescriptor,
        jboolean pin) {
    int fd = jniGetFDFromFileDescriptor(env, fileDescriptor);
    int result = (pin ? ashmem_pin_region(fd, 0, 0) : ashmem_unpin_region(fd, 0, 0));
    if (result < 0) {
        jniThrowException(env, "java/io/IOException", NULL);
    }
    return result == ASHMEM_WAS_PURGED;
}

调用的ashmem_pin_region和ashmem_unpin_region来实现解锁和解锁。实现还是在ashmem-dev.cpp

//system/core/libcutils/ashmem-dev.cpp
int ashmem_pin_region(int fd, size_t offset, size_t len)
{
    .......
    ashmem_pin pin = { static_cast<uint32_t>(offset), static_cast<uint32_t>(len) };
    return __ashmem_check_failure(fd, TEMP_FAILURE_RETRY(ioctl(fd, ASHMEM_PIN, &pin)));
}

通过的也是ioclt通知的驱动。加锁的细节就不展开了。具体的写入就是利用linux的共享内存机制实现的共享。

Linux共享机制简介

共享简单的实现方式就是通过mmap同一个文件来实现。但是真实文件的读写速度实在是太慢了,所以利用tmpfs这个虚拟文件系统,创建了一个虚拟文件来读写。同时这块虚拟内存在上面也写到重写了vm_ops。当有进程操作这个虚拟内存的时候会触发缺页错误,接着会去查找Page缓存,由于是第一次所以没有缓存,读取物理内存,同时加入Page缓存,当第二个进程进来的时也触发缺页错误时就能找到Page缓存了,那么他们操作的就是同一块物理内存了。

总结

看完之后发现AshMemory是基于Linux的共享内存实现的。做了几点改造

  • 首先把一整块内存变成了一个个region,这样在不用的时候可以解锁来让系统回收。
  • 将Linux共享内存的整数标记共享内存,而AshMemory是用的fd,让它可以利用binder机制的fd传输。
  • 读写设置都做了加锁的处理,减少了用户使用的难度。

以上就是Android 匿名内存深入分析的详细内容,更多关于Android 匿名内存的资料请关注编程网其它相关文章!

--结束END--

本文标题: Android匿名内存深入分析

本文链接: https://www.lsjlt.com/news/199925.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • Android匿名内存深入分析
    目录Android 匿名内存解析MemoryFile使用Service端Client端AshMemory 创建原理AshMemory 读写Linux共享机制简介总结Android 匿...
    99+
    2023-03-15
    Android 匿名内存 Android 内存
  • Android匿名内存怎么实现
    本篇内容主要讲解“Android匿名内存怎么实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Android匿名内存怎么实现”吧!Android 匿名内存解析有了binder机制为什么还需要匿名...
    99+
    2023-07-05
  • Android中图片占用内存的深入分析
    目录前言一、图片占用内存与宽、高、色彩模式的关系二、图片占用内存与存放文件夹的关系三、从文件中加载图片和从网络加载图片占用内存四、色彩模式五、总结前言 Android 在加载图片的时...
    99+
    2024-04-02
  • 详解Android Ashmem匿名共享内存
    目录1. 简述2. 创建 MemoryFile 和 数据写入3. 将文件描述符传递到其他进程4. 在其他进程接收 FileDescriptor 并读取数据1. 简述 Android...
    99+
    2024-04-02
  • Redis内存碎片原理深入分析
    目录前言释放的内存去了哪里?什么是内存碎片?什么导致内存碎片?如何解决?总结前言 我们先来看一个问题, 假设Redis实例保存了5GB的数据,现在删除了2GB的数据,那么Redis...
    99+
    2023-02-01
    Redis内存碎片 Redis 内存
  • 如何实现Android中图片占用内存的深入分析
    小编今天带大家了解如何实现Android中图片占用内存的深入分析,文中知识点介绍的非常详细。觉得有帮助的朋友可以跟着小编一起浏览文章的内容,希望能够帮助更多想解决这个问题的朋友找到问题的答案,下面跟着小编一起深入学习“如何实现Android...
    99+
    2023-06-26
  • Pythonlambda匿名函数深入讲解
    目录一,Python中lambda函数的语法二,两个注意点三,lambda 应用一,Python中lambda函数的语法 lambda 函数在 Python 编程语言中使用频率非常高...
    99+
    2023-01-28
    Python lambda匿名函数 Python lambda Python匿名函数
  • 深入解析python返回函数和匿名函数
    目录一、返回函数1、闭包2、nonlocal二、匿名函数——lambda此文章继续上篇高阶函数,地址:python函数式编程以及高阶函数 一、返回函数 高阶函...
    99+
    2024-04-02
  • 深入浅析Java中的内存分配机制
    本篇文章给大家分享的是有关深入浅析Java中的内存分配机制,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。Java 内存分配深入理解Java程序运行在JVM(Java ...
    99+
    2023-05-31
    java 内存分配 ava
  • C++深入分析数据在内存中的存储形态
    目录一.整形在内存中的存储1.原码-反码-补码2.大小端介绍二.浮点型在内存中的存储1.浮点型的存储2.浮点型的读取一.整形在内存中的存储 1.原码-反码-补码 计算机中的整数有三种...
    99+
    2023-01-06
    C++数据在内存中的存储 C++数据存储
  • 匿名Inode的示例分析
    这篇文章将为大家详细讲解有关匿名Inode的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。01唯有文件得人心当一个女生让你替她抓100只萤火虫,她一定不是为了折磨你,而是因为她爱上了你。当你们之间...
    99+
    2023-06-15
  • 深入分析Android NFC技术 android nfc开发
    从概念,实现原理以及最红实现的源码等有助于大家对NFC技术有更深入的理解。NFC 是 Near Field Communication 缩写,即近距离无线通讯技术。可以在移动设备、消费类电子产品、PC 和智能控件工具间进行近距离无线通信。简...
    99+
    2023-05-30
  • C语言数据在内存中的存储流程深入分析
    目录前言类型的基本分类整型浮点数自定义类型整型在内存中的存储原码、反码、补码大端和小端如何判断编译器是大端还是小端浮点数在内存中的存储总结前言 C语言中有char、short、int...
    99+
    2022-11-13
    C语言数据在内存中的存储 C语言数据存储
  • Android 内存分析(java/native heap内存、虚拟内存、处理器内存 )
    1.jvm 堆内存(dalvik 堆内存) 不同手机中app进程的 jvm 堆内存是不同的,因厂商在出厂设备时会自定义设置其峰值。比如,在Android Studio 创建模拟器时,会设置jvm he...
    99+
    2023-09-14
    java android jvm
  • scala匿名函数案例分析
    今天小编给大家分享一下scala匿名函数案例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1.匿名函数含义@1.说明没有...
    99+
    2023-07-05
  • JVM内存管理深入垃圾收集器与内存分配策略的示例分析
    这篇文章给大家介绍JVM内存管理深入垃圾收集器与内存分配策略的示例分析,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出...
    99+
    2023-06-17
  • C++虚函数表与类的内存分布深入分析理解
    目录不可定义为虚函数的函数将析构函数定义为虚函数的作用虚函数表原理继承关系中虚函数表结构多重继承的虚函数表多态调用原理对齐和补齐规则为什么要有对齐和补齐资源链接不可定义为虚函数的函数...
    99+
    2022-11-13
    C++ 虚函数表 C++ 类的内存分布
  • Android深入分析属性动画源码
    1.先看一段动画的代码实现 ObjectAnimator alpha = ObjectAnimator.ofFloat(view, "alpha", 1, 0,1); alpha.s...
    99+
    2024-04-02
  • Android转场动画深入分析探究
    目录早期的转场Material Design 转场动画Material Motion 动画MaterialContainerTransformShared axisFade Thro...
    99+
    2022-11-13
    Android转场动画 Android动画
  • Android权限机制深入分析讲解
    目录1、权限2、在程序运行时申请权限1、权限 普通权限:不会直接威胁到用户安全和隐私的权限危险权限:那些可能会触及用户隐私或者对设备安全性造成影响的权限。 到Android 10 系...
    99+
    2022-12-08
    Android权限机制 Android权限管理 Kotlin权限机制
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作