广告
返回顶部
首页 > 资讯 > 后端开发 > GO >Go语言开发保证并发安全实例详解
  • 417
分享到

Go语言开发保证并发安全实例详解

2024-04-02 19:04:59 417人浏览 八月长安
摘要

目录什么是并发安全?Mutex悲观锁乐观锁版本号机制CAS互斥锁读写互斥锁什么是并发安全? 在高并发场景下,进程、线程(协程)可能会发生资源竞争,导致数据脏读、脏写、死锁等问题,为了

什么是并发安全?

高并发场景下,进程、线程(协程)可能会发生资源竞争,导致数据脏读、脏写、死锁等问题,为了避免此类问题的发生,就有了并发安全。

这里举一个简单的例子:

 var data int 
 Go func() {
   data++ 
 }() 
 if data == 0 { 
   fmt.Printf("the value is %v.\n", data) 
 }

在这段代码中

第2行go关键字开启了一个新的协程,来执行data++操作

第5行,对data变量进行了读取判断的操作

以上两部是由2个不同线程/协程运行,且没有任何措施保证执行顺序,所以执行结果是不确定的。

  • 没有输出。(第3行是在第5行之前执行的)
  • 输出 the value is 0。(第5行和第6行在第3行之前执行)
  • 输出 the value is 1。(第5行在第3行之前执行,但第3行在第6行之前执行)

Go如何保证并发安全

目前了解到的,大概有这3种,Mutex、Channel、Atomic

Mutex

加锁应该是最常见的并发控制方法,一般分成两种,乐观锁和悲观锁

锁是由操作系统的调度器来实现的,锁通常用来保护一段逻辑,

悲观锁

悲观锁是一种悲观思想,它总认为最坏的情况可能会出现。不管意料之外的结果是否会发生,只要存在发生的可能,就在操作这个资源之前先上锁。例如互斥锁读写锁都是悲观锁。

在go中,除了automic,其它都是悲观锁

悲观锁应该都是由操作系统的调度器来实现的,通常用来保护一段逻辑,主要是通过阻塞其它线程,保证当前时刻只有一个线程在对资源进行操作,因此性能相对较差,浪费了计算机多核的优势。

乐观锁

乐观锁的思想与悲观锁的思想相反,它总认为资源和数据不会被别人所修改,所以读取不会上锁,但是乐观锁在进行写入操作的时候会判断当前数据是否被修改过

乐观锁的实现方案主要包含CAS版本号机制

乐观锁适用于多读的场景,可以提高吞吐量。

版本号机制

通过在数据表中,增加一个版本号字段,当数据发生更新时,版本号值发生改变。 例如一个线程A想要更新变量s的值,在读取s的值的同时读取版本号,在提交更新时,用之前读到的版本号值与当前的版本号值进行比对,当且仅当版本号值一致时,才会触发更新,否则不断进行重试,直到更新成功。

CAS

CAS全名为Compare And Swap,即比较与转换,是一种有名的无锁算法。在不使用锁的情况下,实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步,

互斥锁

GO使用Sync包的Mutex类型来实现互斥锁,它能保证同时只有一个goroutine可以访问资源。

func sample() {
	var l sync.Mutex
	l.Lock()
        defer l.Unlock()
	// so something
}

读写互斥锁

GO使用Sync包的RWMutex类型来实现互斥锁。当我们去并发的读取一个资源,只要数据没有发生写入,是没必要加锁的。因此读多写少的情况下,使用读写互斥锁是更好的选择,性能更好。

读写锁分为两种:读锁和写锁。

当一个goroutine获取读锁之后,其他的goroutine如果是获取读锁可以顺利获得,如果是获取写锁就会等待;

当一个goroutine获取写锁之后,其他的goroutine无论是获取读锁还是写锁都会等待。

package main
import (
	"fmt"
	"sync"
	"time"
)
var (
	wg     sync.WaitGroup
	rwlock sync.RWMutex
)
func write() {
	rwlock.Lock() // 加写锁
	time.Sleep(10 * time.Millisecond)
	rwlock.Unlock() // 解写锁
	wg.Done()
}
func read() {
	rwlock.RLock() // 加读锁
	time.Sleep(time.Millisecond)
	rwlock.RUnlock() // 解读锁
	wg.Done()
}
func main() {
	start := time.Now()
	//读多
	for i := 0; i < 1000; i++ {
		wg.Add(1)
		go read()
	}
	//写少
	for i := 0; i < 10; i++ {
		wg.Add(1)
		go write()
	}
	wg.Wait()
	end := time.Now()
	fmt.Println(end.Sub(start))
}

以上就是Go语言开发保证并发安全实例详解的详细内容,更多关于Go保证并发安全的资料请关注编程网其它相关文章!

您可能感兴趣的文档:

--结束END--

本文标题: Go语言开发保证并发安全实例详解

本文链接: https://www.lsjlt.com/news/121098.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作