iis服务器助手广告广告
返回顶部
首页 > 资讯 > 后端开发 > Python >Python Pytorch深度学习之神经网络
  • 827
分享到

Python Pytorch深度学习之神经网络

2024-04-02 19:04:59 827人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录一、简介二、神经网络训练过程2、通过调用net.parameters()返回模型可训练的参数3、迭代整个输入4、调用反向传播5、计算损失值6、反向传播梯度7、更新神经网络参数总结

一、简介

神经网络可以通过torch.nn包构建,上一节已经对自动梯度有些了解,神经网络是基于自动梯度来定义一些模型。一个nn.Module包括层和一个方法,它会返回输出。例如:数字图片识别的网络:

在这里插入图片描述

上图是一个简单的前回馈神经网络,它接收输入,让输入一个接着一个通过一些层,最后给出输出。

二、神经网络训练过程

一个典型的神经


# -*- coding: utf-8 -*-
"""
Created on Sun Oct 24 15:56:23 2021
@author: Lenovo
"""
# 神经网络
# import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        # 1个输入,6个输出,5*5的卷积
        # 内核
        self.conv1=nn.Conv2d(1,6,5)
        self.conv2=nn.Conv2d(6,16,5)
        # 映射函数:线性——y=Wx+b
        self.fc1=nn.Linear(16*5*5,120)#输入特征值:16*5*5,输出特征值:120
        self.fc2=nn.Linear(120,84)
        self.fc3=nn.Linear(84,10)
    def forward(self,x):
        x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
        # 如果其尺寸是一个square只能指定一个数字
        x=F.max_pool2d(F.relu(self.conv2(x)),2)
        x=x.view(-1,self.num_flat_features(x))
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=self.fc3(x)
        return x
    def num_flat_features(self,x):
        size=x.size()[1:]
        num_features=1
        for s in size:
            num_features *= s
        return num_features               
net=Net()
print(net)

运行结果

在这里插入图片描述

以上定义了一个前馈函数,然后反向传播函数被自动通过autograd定义,可以使用任何张量操作在前馈函数上。

2、通过调用net.parameters()返回模型可训练的参数


# 查看模型可训练的参数
params=list(net.parameters())
print(len(params))
print(params[0].size())# conv1 的权重weight

运行结果

在这里插入图片描述

3、迭代整个输入

尝试随机生成一个3232的输入。注:期望的输入维度是3232,为了在MNIST数据集上使用这个网络,我们需要把数据集中的图片维度修改为32*32


input=torch.randn(1, 1, 32,32)
print(input)
out=net(input)
print(out)

运行结果

在这里插入图片描述

4、调用反向传播

将所有参数梯度缓存器置零,用随机的梯度来反向传播


# 调用反向传播
net.zero_grad()
out.backward(torch.randn(1, 10))

运行结果

在这里插入图片描述

5、计算损失值

#计算损失值——损失函数:一个损失函数需要一对输入:模型输出和目标,然后计算一个值来评估输出距离目标多远。有一些不同的损失函数在nn包中,一个简单的损失函数就是nn.MSELoss,他计算了均方误差


如果跟随损失到反向传播路径,可以使用他的.grad_fn属性,将会看到一个计算图

在这里插入图片描述


# 在调用loss.backward()时候,整个图都会微分,而且所有的图中的requires_grad=True的张量将会让他们的grad张量累计梯度
#跟随以下步骤反向传播
print(loss.grad_fn)#MSELoss
print(loss.grad_fn.next_functions[0][0])#Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])#relu

运行结果

在这里插入图片描述

6、反向传播梯度

为了实现反向传播loss,我们所有需要做的事情仅仅是使用loss.backward()。需要先清空现存的梯度,不然梯度将会和现存的梯度累计在一起。


# 调用loss.backward()然后看一下con1的偏置项在反向传播之前和之后的变化
net.zero_grad()
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()#反向传播
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

运行结果

在这里插入图片描述

7、更新神经网络参数


# =============================================================================
# # 最简单的更新规则就是随机梯度下降:weight=weight-learning_rate*gradient
# learning_rate=0.01
# for f in net.parameters():
#     f.data.sub_(f.grad.data*learning_rate)#f.data=f.data-learning_rate*gradient
#  =============================================================================

如果使用的是神经网络,想要使用不同的更新规则,类似于SGD,Nesterov-SGD,Adam,RMSProp等。为了让这可行,PyTorch建立一个称为torch.optim的package实现所有的方法,使用起来更加方便


# =============================================================================
# import torch.optim as optim
# optimizer=optim.SGD(net.parameters(), lr=0.01)
# # 在迭代训练过程中
# optimizer.zero_grad()#将现存梯度置零
# output=net(input)
# loss=criterion(output,target)
# loss.backward()#反向传递
# optimizer.step()#更新网络参数
# =============================================================================

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

--结束END--

本文标题: Python Pytorch深度学习之神经网络

本文链接: https://www.lsjlt.com/news/155733.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

本篇文章演示代码以及资料文档资料下载

下载Word文档到电脑,方便收藏和打印~

下载Word文档
猜你喜欢
  • Python Pytorch深度学习之神经网络
    目录一、简介二、神经网络训练过程2、通过调用net.parameters()返回模型可训练的参数3、迭代整个输入4、调用反向传播5、计算损失值6、反向传播梯度7、更新神经网络参数总结...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络块的网络之VGG
    目录VGG块VGG网络训练模型与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层...
    99+
    2022-11-12
  • Python深度学习pytorch卷积神经网络LeNet
    目录LeNet模型训练不变性 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一。这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络汇聚层理解
    目录最大汇聚层和平均汇聚层填充和步幅多个通道我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络Dropout应用详解解
    目录扰动的鲁棒性实践中的dropout简洁实现扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量。简单性的另一个有用...
    99+
    2022-11-12
  • Python深度学习之实现卷积神经网络
    目录一、卷积神经网络二、网络架构三、卷积四、卷积层五、在Keras中构建卷积层六、池化层七、全连接层八、Python实现卷积神经网络九、总结一、卷积神经网络 Yann LeCun 和...
    99+
    2022-11-12
  • Python深度学习理解pytorch神经网络批量归一化
    目录训练深层网络为什么要批量归一化层呢?批量归一化层全连接层卷积层预测过程中的批量归一化使用批量归一化层的LeNet简明实现争议训练深层神经网络是十分困难的,特别是在较短的实践内使他...
    99+
    2022-11-12
  • Pytorch 使用Google Colab训练神经网络深度学习
    目录学习前言什么是Google Colab相关链接利用Colab进行训练一、数据集与预训练权重的上传1、数据集的上传2、预训练权重的上传二、打开Colab并配置环境1、笔记本的创建2...
    99+
    2022-11-10
  • Python深度学习神经网络残差块
    目录ResNet模型训练模型 ResNet沿用VGG完整的KaTeX parse error: Undefined control sequence: \time at posit...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络多输入多输出通道
    目录多输入通道多输出通道 1×1卷积层虽然每个图像具有多个通道和多层卷积层。例如彩色图像具有标准的RGB通道来指示红、绿和蓝。但是到目前为止,我们仅展示了单个输入和单个输出...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络填充和步幅的理解
    目录填充步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2。从上图可看出卷积的输出形状取决于输入形状和卷积核...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络图像卷积运算详解
    目录互相关运算卷积层特征映射由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例。 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cros...
    99+
    2022-11-12
  • Pytorch深度学习经典卷积神经网络resnet模块训练
    目录前言一、resnet二、resnet网络结构三、resnet181.导包2.残差模块2.通道数翻倍残差模块3.rensnet18模块4.数据测试5.损失函数,优化器6.加载数据集...
    99+
    2022-11-11
  • Python深度学习神经网络基本原理
    目录神经网络梯度下降法神经网络 梯度下降法 在详细了解梯度下降的算法之前,我们先看看相关的一些概念。     1. 步长(Learning rate):步长决定了在梯度下降迭...
    99+
    2022-11-12
  • Python深度学习pytorch神经网络多层感知机简洁实现
    我们可以通过高级API更简洁地实现多层感知机。 import torch from torch import nn from d2l import torch as d2l ...
    99+
    2022-11-12
  • Python深度学习TensorFlow神经网络基础概括
    目录一、基础理论1、TensorFlow2、TensorFlow过程1、构建图阶段2、执行图阶段(会话)二、TensorFlow实例(执行加法)1、构造静态图1-1、创建数据(张量)...
    99+
    2022-11-12
  • Pytorch深度学习经典卷积神经网络resnet模块实例分析
    这篇文章主要介绍“Pytorch深度学习经典卷积神经网络resnet模块实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch深度学习经典卷积神经网络resnet模块实例分析”文章能帮...
    99+
    2023-06-30
  • python机器学习之神经网络
    手写数字识别算法 import pandas as pd import numpy as np from sklearn.neural_network import MLPReg...
    99+
    2022-11-12
  • pytorch之深度神经网络概念全面整理
    目录1、神经网络训练过程2、基础概念2.1数学知识2.1.1导数2.1.2 梯度2.2前向传播和反向传播3、数据预处理手段3.1 归一化  (normalization)3...
    99+
    2022-11-12
  • 深度学习实验3 - 卷积神经网络
    文章目录 实验要求数据集定义1 手写二维卷积1.1 自定义卷积通道1.2 自定义卷积层1.3 添加卷积层导模块中1.4 定义超参数1.5 初始化模型、损失函数、优化器1.6 定义模型训练和测试...
    99+
    2023-09-02
    深度学习 cnn python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作